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World’s #1 Qll ALERER.

semiconductor and display systems company

$17.3 billion
revenue

>12,500
patents

$2 billion
R&D spending Applied Materials is the leader in materials engineering

solutions used to produce virtually every new chip in the world

& D ©

Data as of fiscal year end, October 28, 2018
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Applied’s Materials Engineering
Enabling the Semiconductor Roadmap
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Entering a

NEW ERA > Big Data Era

of
opportunity /& “ A.l. related growth will boost

global GDP by $16T by 2030”

- The Economist / PwC

Social Medla Era “ Data is to this century what oil
was to the last one: a driver of

growth and change”

- The Economist

PC +
Internet Era

2000 2020

@ HERHER.
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Performance Improvements Are Slowing...

, . Proiecti PERFORMANCE IMPROVEMENTS OVER TIME

100,000 End of Moore’s Law
Limits of parallelism of Amdahl's Law

Recent data points suggest

10.000 End of Dennard Scaling
~2X more every 5 years ’
3.5%
10,000,000,000 Hoswel, 0@ 1,000 per year
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é 1,000,000 !.68040 i SOURCE: Computer Architecture: A Quantitative Approach, Sixth Edition, John Hennessy and David Patterson,
- saiss. e 1,000,000= 1.413 December 2017
100,000 B (1.413)2 more every 2 years
» ~2X more every 2 years 45 to 32nm
8086 @ @ 8085 TI M E
10,000
: o Vi — B ETWEEN 32 to 22nm
408: 68.00 L OG I C
1,000
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; i i 14 to 10nm
Classic 2D Feature Scaling Slowing R B
SOURCE: University of Wisconsin
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Data Explosion + Rise of A.l. = Heterogeneous Computing

Rapidly Evolving Architectures Heterogeneous Compute Era
ASIC /| FPGA ASIC /| FPGA | CPU4 | A“d'o

Normal Compiled Imaging, Al Workloads: ASIC
/ Managed Code Video Playback Training, Inference,
(Office, OS, Enterprise) Analytics, etc.

CPU Domain Specific Architectures:

GPU System level optimization

meeting performance, compute
Client CC, Search, Gaming, HPC, Highly and area efficiency goals for
Audio, VOIP Parallel Workloads targeted workloads

@l RERER.
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New Playbook Needed for Connectivity & Speed...

...to address Industry Challenges of Complexity 1, Integration challenges ™M, Time to market NN

Serial mindset VS. Connected mindset

O O O O O O EDA MANUFACTURING
5 § % & &8 ¢
» w S L E 4
g il o § E INTEGRATION EQUIPMENT
= =) 0] Q
g a i e
Ll = L
2 2
< DESIGN MATERIALS
TODAY: Serial / compartmentalized OPPORTUNITY: Parallel development
interaction between key parts of eco-system to accelerate innovation New architectures

PERFORMANCE

New structures / 3D

Connectivity to Accelerate Innovation New materials

PPAC

New ways to shrink

AREA-COST

Advanced packaging

Foundation is Materials Engineering
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Key Challenges & Mitigation Strategies in Al

Key Challenges

IMAGE RECOGNITION

SPEECH RECOGNITION

= Volumes of data and sizes of models are exploding 16X 10x
.. . Model Training
= Longer training times Ops
152 layers 465 GFLOP
= Larger model = more memory ref. > more energy 22.6 GFLOP 12,000 hrs of Data
~3.5% Error ~5% Error
= Power use is not scalable -- energy efficiency issue
8 layers 80 GFLOP
1.4 GFLOP 7,000 hrs of Data
- . . ~16% Error ~8% Error
Mitigation Strategies 2012 2015 2014 2015
AlexNet Microsoft ResNet Deep Speech 1 Baidu Deep Speech 2

= Algorithm and Hardware Co-design

» Customize/optimize per workload type Operation A )R RELATIVE ENERGY COST

» Minimize data moves 32 bit int ADD 0.1 |
32 bit float ADD 0.9 .

» Move memory closer to computation

= New Devices

32 bit Register File
32 bit int MULT

T
31—

o 32 bit float MULT 3.7 —
» Integrate computation into the memory (analog compute) 32 bit SRAM Cache 5 —
» New compute paradigms — quantum, synaptic 32 bit DRAM Memory 640 | N &

8 | External Use

Source: B. Dally (Chief Scientist Nvidia/Stanford), S. Han (Stanford), Efficient Methods and Hardware for Deep
Learning (2017), NIPS 2016 Workshop on Efficient Methods for Deep Neural Networks (2016); V. Sze (MIT),
Efficient Processing of Deep Neural Networks: A Tutorial and Survey (2017) @ APPLIED
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3 Eras of Al Compute Revolution DS SOl i

Synaptic Brain-Inspired
Stochastic )
ReRAM, PcM | Computing

In-Memory Compute Cryo/Quantum | Syperconducting
Superposition )
Entanglement | Quantum Computing

Analog Compute

Memristor . . . )
NOR Flash, pcm, | Analog compute with memory; Mixed signal design

Accelerators ReRAM, FeFET

Embed Memory

MRAM, On die memory; memory does not move
ReRAM, CBRAM

Near Memory

Computational Complexity & Efficiency

DRA&,\\'AV/CHBM’ System level design focused on proximity of memory to the processors
3D SCM
Processors
CPU, GPU Heterogeneous computing, based on optimization using existing building blocks and node scaling
xPU, FPGA
Packaging: 2.5D/EM D2W /3D High Density Interconnect Photonics Cryo
ERA1 ERA2 ERA3

9 | External Use @ ﬁARI'IEHEIE



3 Eras of Al Compute Revolution DS SOl i

Synaptic Brain-Inspired
Stochastic )
ReRAM, PcM | Computing

> In-Memory Compute Cézgé?sioi?ttlg? Superconducting
CICJ Entanglement Quantum Computing
O
= Analog C |
iy o | S .
o NOR Flash, pcm, | Analog compute with memory; Mixed signal design
> Accelerators RERAIL FeBET
i><) Embed Memory |
o MRAM, C . )
= rerav, cBraM | [mplications/Needs:
% Maay Mamany | » Connectivity across the ecosystem
c H,\\'AVC " | System level design fo - -
% 3DSCM » Acceleration of learning cycles
5 Processors | = : H c c
2 CPU.GPU | Heterogeneous computing, based > CO-Optimization and customlgatlon of
S AR | software & hardware, extending from

| | materials to systems

Packaging: 2.5D/EM D2W /3D Highl
ERAL ERA2 ERA3
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Materials to Systems

SIMULATION PROOF OF CONCEPT

Process & Logies

Atomistic Device Standard Physical Algorithms

Integration

Simulations Simulation

Simulation Cells & PDK Design Systems
Verification

CONNECTIVITY THROUGH SIMULATION

Connectivity across tiers to
calibrate simulations to
experiment

PHYSICAL PROOF OF CONCEPT

Dep, Etch,

Novel materials Litho; Novel Novel Circuits, Test Systems

Chips (ASICs,
Characterization Memory, GPU)

Synthesis Integration Devices Variability
schemes

CONNECTIVITY THROUGH PHYSICAL STRUCTURES
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Accelerating the Path to Productization: Lab to Fab

Innovate Integrate Validate Scale to Path to
Materials Process Device 300mm Production

Production +
Infrastructure

Proof of
Concept

University

Startu
P Fab /

Large Infrastructure Capability Investment Foundry
Company

R&D Lab

12 | External Use @ ﬁE‘EHEE



Models are becoming Deeper and Larger

Common NN’s Analog Multiply-Accumulate
AlexNet 724M I
GoogleNet CNN 7M 1.43G vz |
VGG-16 CNN 138M 15.5G e T gt
ResNet50 CNN 25.5M 3.9G ; | 1= Giy'Vy + Gag'V, + Gr'Vs
RestNet152 CNN 60M 11.3G S
- MLPO MLP 20M n 2
MLP1 MLP 5M
LSTMO LSTM (RNN) 52M _ o
LSTM1 LSTM (RNN) 34M Vector Matrix Mul_tlpllcatlon |
performed by sensing current;
CNNO CNN 8M weights stored as cell conductances
~ CNN1 CNN 100M
How to store weights on die?
— 95% of TPU Workload How to make MACs more efficient?

Sources: V. Sze (MIT), Efficient Processing of Deep Neural Networks: A Tutorial and Survey (2017),

Canziani, Alfredo; Paszke, Adam; Culurciello, Eugenio; An Analysis of Deep Neural Network Models for Practical Applications; (2016),
N. P. Jouppi et. al, In-Datacenter Perf. Analysis of a Tensor Processing Unit, 44th International Symposium on Computer Architecture
(ISCA), Toronto, Canada, June 24-28, 2017
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Materials to Systems Approach is Needed

>

>

o R

9 @ .I e % .‘g’ ¥ C
X

PROCESS DEVICES & =

MATERIALS TECHNOLOGY STRUCTURES DESIGN ARCHITECTURE ALGORITHMS SYSTEMS %
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Materials Innovation Drives Performance of Al Devices

@ 0 © 6 0 © o

PROCESS DEVICES &

ITELALS TECHNOLOGY STRUCTURES

DESIGN ARCHITECTURE

ALGORITHMS

SYSTEMS

SNOLLYDNddV IV

Performance of Different In-Memory Compute Elements
Based on MNIST data set

Potential Analog Synapses

Digital
. SUEE ReRAM ReRAM ReRAM PCRAM
Device type
Metric 6-bit SRAM Ag:a-Si AIOX/HfO2 TaOx/HfOx  GST
# of conductance states # - 97 40 128 100-120 32
Nonlinearity (weight up/down) ratio - 24/-49 19/-06 004/02 01/24 16/18
Properties of RON kQ - 26,000 17 86 5 500
materials ON/OFF ratio ratio - 12.5 4.4 10 20 ~1,300
system Weightincrease pulse ~ Vips - 32/300 09/100  16/0.05 07/6 217150
Weight decrease pulse Vips - -2.8/300 -1/100 1.5/70.05 3/0.125 -1.62 /50
Cycle-to-cycle variation (a) % - 3.5% 5% ~3.5% 1.5% <1%
Area pmA2| 10,311 1,072 3,657 1,513 7,233 1,194
Power Latency (optimized) sec 0.5217 64,200 4,440 10 413 480
Performance Energy (optimized) mJ 22 15 146 0.81 1,340 021
nference Latency msec L } } L ) ;
Area (PPA) Inf L 292 024 0.20 0.20 0.20 0.20
Inference Energy 18} 26.1 24 5.0 31 6.5 27
ML Algorithm Online learning accuracy % ~94% ~73% ~41% ~73% ~87% ~00%
Reference Adapted from S. Yu, ASU/Georgia Tech

Different
materials
systems

Properties
developed
by materials
engineering

Resulting
Power,
Performance,
Area

Al Model Accuracy

(1) Nonlinear
. weight update
.

Resistive switching Conductive bridge
memory (RRAM) memory (CBRAM)

Conductance

.
,/Ideal linear
- weight

0

Write Pulse #

Ferroelectric memory
Phase change memory (PCM) (FeRAM)

Images: lelmini, “In-memory computing with emerging memory devices”,
Politecnico di Milano

Many different device types & mechanisms: Need to leverage intrinsic physics for Al compute
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Device Physics to Cell Behavior

Materials
Database

Framework

Computation

Engine

GUI

Design &Analysis

RRAM stack for digital memory cell

Top
Electrode:
50nm TiN

Capacitor
/DRAM

*+ |leakage

* DC&AC
Capacitance

* Transients

* Breakdown

* Defect
spectroscopy

RRAM/
Neuromorphic

Forming
Set/reset
Variability
Endurance
Pulse behavior
Noise

Ferroelectric
-V

DC & AC
Capacitance
Memory cells
Transistors
Endurance

Selector
Leakage
On/Off
Endurance
Breakdown

Reliability
Oxide
Breakdown

* Tddb
* Vdb
BTI
SILC
Noise

\ 4

Bottom
Electrode:
50nm TiN

Understand and Exploit Cell Physics

Engineer Cell Stack Based on Understanding
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~400 nm 0
J. Woo et al., EDL 2017 aulse (1) Nonlinear
4 . welght update
Inputs: Outputs:
Write Pulse #

Materials/pro

film thicknesses,

layering sche

perties, Forming behavior,
potentiation/depression

me, etc. behaviors, variability, etc.

Qll ARERER.



Connectivity Through Partnerships

ESD and SUNY Announce New
Research Partnership with Applied
Materials

Applied Materials team selected
by DARPA to develop advanced
technology for Al

urrent (A)

(<

Voltage (V)

New Applied Materials R&D Center to

Applied is working with Arm and Help Customers Overcome Moore’s

W Symetrix to develop a new Law Challenges
J7 f"‘ia oben neuromorphic switch based on Applied Ventures and Empire State
i [ CeRAM memory S Development Aim to Accelerate

10° * — ource: oly . .

. r#ﬁ TE Announced July 24t 2018 Innovation in Upstate New York

o L s Announced Nov 15th 2018

IBM Launches Research
Collaboration Center to Drive
Next-Generation Al Hardware
Partnerships with leading
semiconductor equipment companies
Applied Materials... are crucial to the
successful introduction of disruptive

materials and devices to fuel our Al
hardware roadmap.

Announced Feb 7th 2019

Free layer
(CoFeB based)

MgO barrier

Reference layer

Spin Memory Teams with Applied
Materials to Produce a
Comprehensive Embedded
MRAM Solution

Announced Nov 11th 2018

Pinned layer

Bottom electrode

4VS paseq 1d/0D

Source: IBM
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DEVICES &
STRUCTURES

MATERIALS

PROCESS
TECHNOLOGY

Q

529 ALGORITHMS

SYSTEMS &

SOFTWARE

ARCHITECTURE
& DESIGN

SNOILVYOI'lddV IV
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