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e Physical Model:

o an electronic circuit for each neuron and synapse
o Time models itself

e Accelerated dynamics: 1000 - 10000 faster wrt. biology
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BrainScaleS-1

e Wafer scale neuromorphic
experiments can be conducted via A e YRR
PyNN I

e Networks described in terms of
populations of neurons and their
connections

e Low-level access to hardware
parameters possible
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Wafer-scale Synfire Chain

e
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Hardware Implementation similar to

“Characterization and Compensation of

Network-Level Anomalies in
Mixed-Signal Neuromorphic Modeling
Platforms” (Petrovici 2014)

> 13k neurons and ~200k synapses

neuron populations
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(Balanced) Random Network

“Dynamics of Sparsely Connected
Networks of Excitatory and Inhibitory
Spiking Neurons” (Brunel 2000)

3000 neurons
~700k synapses

138 HICANN chips

800 individual external poisson
sources with 50 Hz each -> 40 k
(bio) (400 MHz wall clock rate)
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Training deep networks with time-to-first-spike
coding on the BrainScaleS wafer-scale system

Hardware Implementation of “Supervised i
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Learning Based on Temporal Coding in Spiking £°=:
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Neural Networks” (Mostafa 2018) Lt

Proof-of-concept implementation that learns to
recognize patterns on the BrainScaleS using
time-to-first-spike coding

Single spikes promise to be an energy efficient
and fast (~us) approach to feature detection on
neuromorphic hardware

0 560 10'00
training steps [1) Ig]

= L
£ 0
G : :

Ve [mV]
?

Vo [mV)
F

0 20 40 60 80 100 0 20 40 60 80 100
time [ms] time [ms]



BrainScaleS-2

e Essentially all of BSS-1 (however:
small prototype chip)
e Embedded processor for

programmable plasticity
o observe: accumulated correlation, neuron
spike counts, (individual spikes)
o control: weights, neuron parameters, ...
o — two-factor + reward-modulated STDP,
structural plasticity, homeostasis, ...

e Embedded processor for other tasks:

o virtual environments; closed-loop
sensor/motor modeling
o self-calibration
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Examples: "

e Structural Plasticity 5 06

o e.g.auditory feature :
selection

e Closed-Loop v

Reinforcement Learning 00 0 25 50 75 100 125 150 175 200

(https://doi.org/10.3389/fnins.2019.00260) enoeiis _
e Unsupervised learning,
e.g., using Spike-based ==
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Unsupervised Learning on BrainScale$-2
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http://www.youtube.com/watch?v=LW0Y5SSIQU4&t=15
http://www.youtube.com/watch?v=x3l1xl8orhQ
https://doi.org/10.3389/fnins.2019.00260

BrainScaleS-1: Hands-On Py

e You will remote access BrainScaleS-1viaa llessss!
jupyter notebook A G PR

e You will define spiking neural networks L
using the Python-based PyNN API

e You will visualization the generated
hardware configuration

e You will run experiments and analyse the

results
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BrainScaleS-2: Hands-On

e You will access one local
“‘HICANN-DLS v2 Prototype”

o (we can also use some more setups
remotely)

e You will work with the lowest
configuration API level
(exposing all bits and pieces)

e You will use the embedded processor




