BrainScaleS Hands-On Tutorial —Overview—

S. Schmitt
E. Müller
Heidelberg University

NICE 2019 Albany CNSE Campus Albany, NY

BrainScaleS-2 Prototype

BrainScaleS-1 Wafer Module

BrainScaleS Architectures $C\frac{dV}{dt} = -g_L(V - E_L) + I + g_L\Delta_T \exp(\frac{V - V_T}{\Delta T}) - w$

$$C\frac{dV}{dt} = -g_L(V - E_L) + I + g_L \Delta_T \exp(\frac{V - V_T}{\Delta T}) - w$$

$$\tau_w \frac{dw}{dt} = a \left(V - E_L \right) - w$$

(Adaptive Exponential Integrate-and-Fire)

- Physical Model:
 - an electronic circuit for each neuron and synapse
 - Time models itself
- Accelerated dynamics: 1000 10000 faster wrt. biology

BrainScaleS-1

- Wafer scale neuromorphic experiments can be conducted via PyNN
- Networks described in terms of populations of neurons and their connections
- Low-level access to hardware parameters possible

Wafer-scale Synfire Chain

- Hardware Implementation similar to "Characterization and Compensation of Network-Level Anomalies in Mixed-Signal Neuromorphic Modeling Platforms" (Petrovici 2014)
- > 13k neurons and ~200k synapses

(Balanced) Random Network

 "Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons" (Brunel 2000)

- 3000 neurons
- ~700k synapses
- 138 HICANN chips
- 800 individual external poisson sources with 50 Hz each -> 40 kl (bio) (400 MHz wall clock rate)

Training deep networks with time-to-first-spike coding on the BrainScaleS wafer-scale system

- Hardware Implementation of "Supervised Learning Based on Temporal Coding in Spiking Neural Networks" (Mostafa 2018)
- Proof-of-concept implementation that learns to recognize patterns on the BrainScaleS using time-to-first-spike coding
- Single spikes promise to be an energy efficient and fast (~µs) approach to feature detection on neuromorphic hardware

BrainScaleS-2

- Essentially all of BSS-1 (however: small prototype chip)
- Embedded processor for programmable plasticity
 - observe: accumulated correlation, neuron spike counts, (individual spikes)
 - o control: weights, neuron parameters, ...
 - → two-factor + reward-modulated STDP,
 structural plasticity, homeostasis, ...
- Embedded processor for other tasks:
 - virtual environments; closed-loop sensor/motor modeling
 - self-calibration

BrainScaleS-2 Experiments

Examples:

- Structural Plasticity
 - e.g. auditory feature selection
- Closed-Loop
 Reinforcement Learning
 (https://doi.org/10.3389/fnins.2019.00260)
- Unsupervised learning,
 e.g., using Spike-based
 Expectation Maximization

BrainScaleS-1: Hands-On

- You will remote access BrainScaleS-1 via a jupyter notebook
- You will define spiking neural networks using the Python-based PyNN API
- You will visualization the generated hardware configuration
- You will run experiments and analyse the results

BrainScaleS-2: Hands-On

- You will access one local "HICANN-DLS v2 Prototype"
 - (we can also use some more setups remotely)
- You will work with the lowest configuration API level (exposing all bits and pieces)
- You will use the embedded processor

