Neuromorphic Computation for Autonomous Mobility in Natural Environments

Rolf Müller, Ruihao Wang, Omar Khyam, David Alexandre, Ananya Bhardwaj
rolf.mueller@vt.edu

Department of Mechanical Engineering, Virginia Tech

March 28th, 2019
Autonomy for the Real World
Bats as a Model

photos: D. Nill
Complexity of Bat Habitats
Components of Peripheral Dynamics

- reorientation
- non-rigid deformation
- nonlinear transform

Gao & Müller
(2011)

Yin & Müller
Proc. Natl. Acad. Sci. USA
(under revision)

R. Müller et al.
Bats, Bushes, & Brains,
page 5 of 26
Softrobotic Reproductions

Schneider & Möhres, Z. Vergl. Physiol. (1960)

R. Müller et al.
Bats, Bushes, & Brains,
page 7 of 26
Performance Gain Example: Direction Finding

Natural Stimulus Ensemble

- 4 different field sites
- 220,000+ uncorrelated echoes
Real-World Task: Finding Passageways in Foliage

- Foliage size: 1.5 x 1 x 0.8 m (LxHxW)
- Gap widths: 10, 20, 30 cm
- Distances: 0.6 – 1.4 m
- Number of echoes: 12,000
Real-World Task: Finding Passageways in Foliage
Real-World Task: Finding Passageways in Foliage
Real-World Task: Finding Passageways in Foliage

Real-World Task: Finding Passageways

- Energy gap: 10 cm x 30 cm
- Distance: 1.4 m
Real-World Task: Finding Passageways

ConvNet

energy

gap: 10 × 30 cm
distance: 1.4 m
Real-World Task: Finding Passageways

R. Müller et al.
Bats, Bushes, & Brains,
page 14 of 26
1. time variance encodes sensory information
 \rightarrow timing matters
1. time variance encodes sensory information → timing matters

2. short time scales (1 - 50 ms) → computation based on a few spike times
1. time variance encodes sensory information → timing matters

2. short time scales (1 - 50 ms) → computation based on a few spike times

3. fast (<100 ms) closed-loop control → hardware implementation
1. time variance encodes sensory information
 \[\rightarrow\] timing matters

2. short time scales (1 - 50 ms)
 \[\rightarrow\] computation based on a few spike times

3. fast (<100 ms) closed-loop control
 \[\rightarrow\] hardware implementation

4. pilot data …
Neuromorphic Signal Representations

- Stimulus - Echoes from environment
 - Basilar Membrane Model
 - Gammatone
 - Gammachirp
 - DRNL
 - Inner Hair Cells Model
 - Auditory Nerve Spiking Model
 - Leaky IAF
 - SRM Kernel
 - Controller

Graphs illustrating time and channel data.
Linear Models: Symmetric vs. Asymmetric

Gammatone
Gammachirp
Simple Complex
Amplitude (dB) Amplitude (dB)
Frequency [kHz]
DRNL

Gammatone
Gammachirp

Amplitude (dB) Amplitude (dB)
Frequency [kHz]
Dual-Resonance Nonlinear (DRNL) Model

Simple
- Gammatone
 - Linear gain
 - Cascade of 2 1st-order GTF
 - Cascade of 4 2nd-order Butterworth LPF

Nonlinear path
- Cascade of 3 1st-order GTF
- Broken sticky nonlinearity
- Cascade of 3 1st-order GTF
- Cascade of 3 2nd-order Butterworth LPF

Input
Output

Complex
DRNL

Input signal level 80 dB
Amplitude (dB)

Input signal level 20 dB
Amplitude (dB)

Frequency [kHz]
Spike Response Models

- **Leaky Integrate-And-Fire:**
 - simple integration
 - static threshold
 - 3 parameters

- **Response Kernels:**
 - after-potential computation
 - reduced responsiveness after spike
 - dynamic threshold
 - 6 parameters
Optimization of Model Parameters

- optimization over entire parameter space
- objective: static/dynamic difference in coding capacity
- information-theoretic analysis (entropy)
Information-Theoretic Analysis: Direct Entropy Method

\[H(w) = - \sum P(w_i) \cdot \log_2 P(w_i) \]
Peripheral Dynamics & Primary Signal Representation

Gammatone
Gammachirp
DRNL

Dynamic
Static
Difference

Entropy Difference

Frequency [kHz]

R. Müller et al.
Bats, Bushes, & Brains,
page 22 of 26
Peripheral Dynamics & Neural Coding Capacity

LIAF spike model
Peripheral Dynamics & Neural Coding Capacity

Entropy difference [Dynamic - Static]

- Gammatone
- Gammachirp
- DRNL

Effect of basilar membrane model

Effect of spike model

Response kernel spike model

R. Müller et al.
Bats, Bushes, & Brains,
page 24 of 26
autonomy in complex natural environment is possible
autonomy in complex natural environment is possible

hypothesised key components:
autonomy in complex natural environment is possible

hypothetical key components:

1. peripheral information encoding
autonomy in complex natural environment is possible
hypothetical key components:
 1. peripheral information encoding
 2. primary signal representation
autonomy in complex natural environment is possible

hypothesetical key components:

1. peripheral information encoding
2. primary signal representation
3. neuromorphic signal representation & computing

future work:

- useful information
- better neuromorphic computing (paradigms & hardware)
- adaptive control
autonomy in complex natural environment is possible

hypothesised key components:

1. peripheral information encoding
2. primary signal representation
3. neuromorphic signal representation & computing
4. system integration & adaptive control

future work:

- useful information
- better neuromorphic computing (paradigms & hardware)
- adaptive control
autonomy in complex natural environment is possible

hypothesised key components:

1. peripheral information encoding
2. primary signal representation
3. neuromorphic signal representation & computing
4. system integration & adaptive control

pilot data: coding capacity depends integration of peripheral dynamics, primary representation, & neural model
autonomy in complex natural environment is possible

hypothesical key components:

1. peripheral information encoding
2. primary signal representation
3. neuromorphic signal representation & computing
4. system integration & adaptive control

pilot data: coding capacity depends integration of peripheral dynamics, primary representation, & neural model

future work:
autonomy in complex natural environment is possible

hypothesised key components:

1. peripheral information encoding
2. primary signal representation
3. neuromorphic signal representation & computing
4. system integration & adaptive control

Pilot data: coding capacity depends on integration of peripheral dynamics, primary representation, & neural model

Future work:

- useful information
- autonomy in complex natural environment is possible
- hypothetical key components:
 1. peripheral information encoding
 2. primary signal representation
 3. neuromorphic signal representation & computing
 4. system integration & adaptive control
- pilot data: coding capacity depends integration of peripheral dynamics, primary representation, & neural model
- future work:
 - useful information
 - better neuromorphic computing (paradigms & hardware)
autonomy in complex natural environment is possible

hypothetical key components:

1. peripheral information encoding
2. primary signal representation
3. neuromorphic signal representation & computing
4. system integration & adaptive control

pilot data: coding capacity depends integration of peripheral dynamics, primary representation, & neural model

future work:

- useful information
- better neuromorphic computing (paradigms & hardware)
- adaptive control
Acknowledgments

ONR "MURI: Bioinspired Adaptive Sonar for Classification and Guidance in Complex Environments"

NAVSEA/NEEC "Bioinspired Broadband Sonar"

NSF "Novel Dynamic Paradigms for Wave-based Sensing"

IBM Faculty Award
Information-Theoretic Analysis: CDM Entropy Method

Entropy Calculation - Centered Dirichlet Method

<table>
<thead>
<tr>
<th>N bins</th>
<th>K = 2(^N) words</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 1</td>
<td>0 0 1 1 1 0 1 0</td>
</tr>
<tr>
<td>0 0 0 1 0</td>
<td>0 1 1 0 0 1 1 0</td>
</tr>
<tr>
<td>0 0 1 0 0</td>
<td>1 1 0 1 0 0 1 1</td>
</tr>
<tr>
<td>0 1 0 0 0</td>
<td>1 0 0 0 1 1 1 1</td>
</tr>
</tbody>
</table>

Prior \(\pi|\alpha, p \sim \text{Dir}(\alpha, \alpha, \alpha, \alpha, \alpha)\)

Words

| 0 0 0 0 0 0 |
| 0 1 0 1 0 1 |
| 0 0 0 0 0 0 |
| 0 0 0 0 0 1 |

Histogram

Posterior \(\pi|\alpha, p \sim \text{Dir}(3\alpha, 2\alpha, 1\alpha, \alpha, \alpha)\)