

Neuromorphic Robot Perception for Autonomous Control

Keith Sullivan, Joe Hays, Ed Lawson,

Naval Research Laboratory, Washington, DC

DISTRIBUTION A. Approved for public release: distribution unlimited

Overview: Big Picture

One of the *biggest challenges* in robot vision is how to *efficiently* make decisions from a stream of high resolution images

Navigating on SWAP constrained robots

• Consider the scenario:

ABORATORY

- Investigate a region: Butch is given GPS waypoints
- How do we navigate between waypoints?
- Navigation in unstructured outdoor environments is hard!
 - Widely varying terrain, some surfaces are better than others
 - SWAP constrained platform; GPUS are too expensive

Small, lightweight, backpackable robot

Investigate quadruped locomotion on the 5-10 kg (meso) scale

Study high power density Research hydraulic drivetrains

Develop the controls to perform highly dynamic maneuvers

Objective | Provide new capabilities to the warfighter

What is the Meso-scale?

Unique Capabilities

Equip squad with prototype robotic capabilities to perform covert or hazardous operations: Intelligence, Surveillance, and Reconnaissance (ISR), walk point, EOD/ counter-IED operations, share supplies, or project power

Boston Dynamics

MIT

Cheetah

Increased Performance

Quadrupeds are capable of navigating terrain too challenging for wheeled or tracked platforms, and can perform future dynamic running, jumping, and climbing operations

Lighter

Robots easily carried and deployed from a soldier's backpack

Glen Henshaw Principal Investigator US Naval Research Laboratory Glen.Henshaw@nrl.navy.mil

TrueNorth: IBM Research's neuromorphic processor

- Ultra low power, 70mW in full operation
- Over 1 million neurons, 256 million synapses, 4096 parallel neural cores
- Trains using a standard deep network (CNNs) with the Eedn framework
- Streaming library processes images at 1000 inferences per second

DISTRIBUTION A. Approved for public release: distribution unlimited

Using neuromorphic computing, identify traversable terrain to navigate a small autonomous robot around NRL, Washington, DC

DISTRIBUTION A. Approved for public release: distribution unlimited

Terrain Classification

Scan the region immediately in front of the robot, making terrain classifications at 5 fixation locations

- Predict: Concrete, Grass, Asphalt
- Patch size is 350x450,
- Stay on the sidewalk!!

No concrete detected

Concrete is straight ahead

Concrete is on the left

DISTRIBUTION A. Approved for public release: distribution unlimited

Terrain Classification

- Classification
 - Patch size (input) 350x450
 - 2 convolutional layers (128 7x7 conv.; 256 10x10 conv.)
 - Uses 2284 of the 4096 available TN cores
- Trained using images collected at NRL to learn types of terrain
 - Fully supervised training
- Endeaver Robotics PackBot equipped with carnegie robotics S7 providing images at 5 Hz
 - Found that the TN classified regions without any lag.

- Effective at classifying different types of regions
- Some logic is needed to handle special cases:
 - Decision points (left vs straight)
 - Cross-walks (don't run my robot over!)

 Unfamiliar variations that are not in the training set can be challenging – some issues are fences, hard shadow, gates, discolored concrete

DISTRIBUTION A. Approved for public release: distribution unlimited

- We currently integrating this into the ROS navigation stack
 - GPS waypoint navigation completed
- Experimentation with Loihi
- Have also explored other strategies such as foveation and fixation, which has shown to help to decrease image size and improve system accuracy