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DNNs Are Really Good At a Lot of Things
“If a typical person can do a mental 
task with less than one second of 
thought, we can probably automate 
it using AI either now or in the near 
future.”

-Andrew Ng



They Also Have Their Disadvantages

● Require huge, diverse, and labeled datasets to avoid overfitting
○ Transfer learning, data augmentation, dropout, and regularization often help

● Long training times
○ Transfer learning, normalization

● Millions of tunable weights and huge, complicated architectures
○ Transfer learning (again),, weight compression, GPUs, global average pooling

● Various architectures, and hyper-parameters that are often problem-specific
○ hyperparameter tuning, trial-and-error, https://stackexchange.com/
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K.I.S.S. (Keep It Simple, Stupid)

● Current trend of bigger, more elaborate networks is not sustainable
○ edge technologies, power consumption, AGI

● Why train a larger network only to prune it later upon deployment?



Inspiration from signal processing

● Compressed sensing (Candes et al. 2005) is a signal acquisition and 
compression method that samples well below the Nyquist frequency

● Robust to noise
● Dumb encoder, smart decoder 
● Not interested in decoding here

random sampling matrix
signal compressed 

signal

“One can regard the possibility 
of digital compression as a 
failure of sensor design. If it is 
possible to compress measured 
data, one might argue that too 
many measurements were 
taken.” 

 - David Brady



Compressed Learning

● Reconstruction illustrates inherent information is stored in compressed vector
● Reconstruction is cool
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Compressed Sensing and DNNs

● Many approaches concentrate compression effort on inputs
○ Adler et al. (2016) 
○ Gueguen et al. (2018)

● Ehrlich et al. (2019) propose a residual framework



Our Method

● We propose randomly projecting the last feature map layer in to a 
lower-dimensional vector



RL Task

● DQN learning to play pong from scratch
● Rewarded or punished by score relative to opponent
● Max score: 21



Layer Filter / Weight 
Dimension

Output Dimension

Input 4 x 84 x 84 -

Conv1 8 x 8, 32, stride 4 32 x 21 x 21

ReLU - 32 x 21 x 21

Conv2 4 x 4, 64, stride 2 64 x 10 x 10

ReLU - 64 x 10 x 10

Conv3 3 x 3, 64, stride 1 64 x 10 x 10

ReLU - 64 x 10 x 10

Fully-connected1 6400 x 512 512

Output 512 x 6 6
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Conv1 8 x 8, 32, stride 4 32 x 21 x 21

ReLU - 32 x 21 x 21

Conv2 4 x 4, 64, stride 2 64 x 10 x 10

ReLU - 64 x 10 x 10

Conv3 3 x 3, 64, stride 1 64 x 10 x 10

ReLU - 64 x 10 x 10

Random Projection 6400 x # samples # samples

Fully-connected1 # samples x 512 512

Output 512 x 6 6
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Results

● Sampling rate of .5 caused best results
● Twice as fast as control network

○ Even when global average pooling (Szegedy et al. 2014) and group normalization (Wu et al. 
2018) were added

● Replacing random projection layer with learnable fully-connected layer 
resulted in slightly worse performance and also took longer to train



rate = 0.5

Control 
without GAP 
and Norm.

Control with 
GAP and 
Norm.



Further Investigation

● Random projections applied at output layer of AlexNet
○ After global average pooling which was added

● Fully Convolutional 
● Trained on MNIST dataset



Classification Results

● The proposed network was competitive with the control
● Examination of activations and weights

○ Much sparser weights and biases - layer 3 shown below

ControlCS
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