

Active sensing and its application to neuromorphic space imaging Gregory Cohen – ICNS, WSU

Important Points

- The importance of active sensing
- The importance of prediction in neuromorphic systems
- Temporal resolution makes up for spatial resolution
- The importance of synchronization
- Biologically inspired not biologically plausible
- Low-power, low-bandwidth sensing and computation

What is space situational awareness?

Space Situational Awareness

Dr Stuart Grey

Low-Earth Orbit Source: stuffin.space

Medium Earth Orbit

Geosynchronous Orbits Source: stuffin.space

Neuromorphic Event-based Sensors

Novel imaging paradigm

- Independent and asynchronous pixels
- Logarithmic change detection gives very high dynamic range
- Frame-free imaging with no fixed integration times
- High-speed imaging (events have 1 µs resolution)
- Greatly reduces motion blur and saturation effects

High-speed, low-power, low-bandwidth imaging

Requires a new approach to processing and computer vision

International Centre Neuromorphic Systems

WESTERN SYDNEY UNIVERSITY

(logarithmic axis)

New Imaging Paradigm for Terrestrial Imaging

Unparalleled Orbital Applications

Experimental Setup

Telescope	Manufacturer and Model	Focal Length	f / ratio	Sensor
Primary telescope	Officina Stellare RH200	600 mm	f / 3	CCD Sensor
Secondary telescope	8" Meade LX200	2000mm	f / 10	ATIS Sensor

Australian Government Department of Defence

Defence Science and Technology Group

Imaging the Stars and Planets

- 24

.

Imaging the Stars and Planets

WESTERN SYDNEY UNIVERSITY

Low Earth Orbit Satellites (LEOs)

Siderally tracking the stars.

PAGE 14

Tracking LEOs – Tracking SL8RB 21938

Low Earth Orbit Satellites (LEOs)

WESTERN SYDNEY UNIVERSITY

Siderally tracking the stars.

Event Frames

Visualization Surface

ABS-6 GEO Synchronous Orbit Ground Truth

Geosynchronous Objects

Object: ABS-6 (25924) on 04/06/207

Visualization Surface

Sidereal tracking is used to visualize the GEO

Real-time Detection of Daytime LEOs

Atmospheric Effects? Jupiter from the DAVIS Camera

100

150

200

Atmospheric Effects?

Scintillation Effects?

Star Tracking with CCD Imaging

PAGE 24

Star Mapping with an Event-based Sensor

220 200 180 160 140 120 100 80 60 40 20

PAGE 25

Star Mapping with an Event-based Sensor

Comparison of the inferred star map and the ground truth from the CCD sensor

Seeing Through Gaps in Clouds

WESTERN SYDNEY UNIVERSITY

Seeing Through Gaps in Clouds

PAGE 28

Active Sensing and Occlusion-invariant Sensing

Seeing through the bushes

SEEING THROUGH THE CLOUDS Seeing through the bushes

Seeing through the bushes

