
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Shortest Path and Neighborhood Subgraph
Extraction on a Spiking Memristive
Neuromorphic Implementation
Catherine D. Schuman, Kathleen
Hamilton, Tiffany Mintz, Md Musabbir
Adnan, Bon Woong Ku, Sung-Kyu Lim and
Garrett S. Rose

Oak Ridge National Laboratory, University
of Tennessee and Georgia Institute of
Technology

2

TENNLab Neuromorphic Research

Materials

Devices

Microarchitecture

System Architecture/Organization

System Software and Communications

Algorithms

Applications

neuromorphic.eecs.utk.edu

3

What are Spiking Neuromorphic Systems?

• Non von-Neumann computers inspired
by biological brains

• Can perform certain workloads with
significantly less power than traditional
architectures

• Resurgence in neuromorphic systems in
recent years due to the rise of machine
learning and deep learning applications

Source: https://www.nextplatform.com/2016/02/09/the-second-coming-of-
neuromorphic-computing/

4

Properties of Spiking Neuromorphic Systems

• Massively parallel computation

• Collocated processing and memory

• Simple processing elements that perform specific computations

• Simple communication between elements

• Event driven computation

• Stochastically firing neurons for noise

• Inherently scalable architectures

5

Key research question:
Can we use these properties
for non-neural network and
non-machine learning
applications?

6

Why do we care about non-neural network
applications?

?

7

How are spiking neuromorphic systems used?

• Through January 2017, less than 1
percent of the papers in
neuromorphic computing that
implemented an application did so
with a non-neural network
application

Source: Schuman, Catherine D., et al. "A survey of neuromorphic computing
and neural networks in hardware." arXiv preprint arXiv:1705.06963 (2017).

8

Example Non-Neural Network Applications

• Graph algorithms
– See Abdullahi Ali’s poster on network flow

• Scientific simulations

• Constraint satisfaction and optimization problems
– Several talks earlier this week (e.g., Sudoku and graph coloring)

• Solving partial differential equations through neural algorithms and
Markov random walks
– See Leah Reeder’s poster and Brad Aimone’s talk yesterday

• Composite algorithms through utility and numerical kernels

9

Memristive Spiking Neuromorphic System

• Leaky integrate-and-fire neurons with programmable thresholds and
refractory periods

• Synapses with programmable delays and weights, and some form of
STDP

Accumulation Fire Learning Idle
Neuron 9.81 pJ 12.5 pJ - 7.2 pJ
Synapse 1.45 pJ - 2.58 pJ 0.07 pJ

Source:
• M. M. Adnan, S. Sayyaparaju et al., “A twin memristor synapse for spike timing dependent learning in neuromorphic systems,” in Proceedings of the 31st

IEEE International System-On-Chip Conference (SOCC). IEEE, 2018. To appear.
• G. Chakma, M. M. Adnan et al., “Memristive mixed-signal neuromorphic systems: Energy-efficient learning at the circuit-level,” IEEE Journal on

Emerging and Selected Topics in Circuits and Systems, vol. 8, no. 1, pp. 125–136, 2018.
• C. D. Schuman, R. Pooser et al., “Simulating and estimating the behavior of a neuromorphic co-processor,” in Proceedings of the Second International

Workshop on Post Moores Era Supercomputing. ACM, 2017, pp. 8–14.

10

How do you map a problem onto neuromorphic
systems?

• Need to convert your problem into using neurons, synapses, and
spikes

• Need to define:
– How to set up your network (network topology, parameters)
– Where/when spikes should be applied
– How long to run your neuromorphic systems
– Where/when to read and write network properties

• We’ll walk through two graph problems:
– Single source shortest path
– Neighborhood subgraph extraction

11

Single Source Shortest Path Embedding

• Graph G to Network N:
– Vertex in G  Neuron in network N with 0 threshold and a long enough

refractory period to make sure it fires only once
– Edge in G  Synapse in network N with weight of 1 and delay proportional to

the length of the edge in G

12

Single Source Shortest Path Embedding

• Graph G to Network N:
– Vertex in G  Neuron in network N with 0 threshold and a long enough

refractory period to make sure it fires only once
– Edge in G  Synapse in network N with weight of 1 and delay proportional to

the length of the edge in G

• Steps for shortest path algorithm:
1. Stimulate source neuron
2. Simulate for long enough a single spike travel along every edge in the

network
3. Read out spike times and updated graph

1. Spike times of each neuron give the length of the shortest path from the source node to
each destination node

2. Potentiated edges give shortest paths

13

14

Stimulate
source
neuron

15

0
Simulate
long
enough to
let spikes
propagate

16

1
0

1

Simulate
long
enough to
let spikes
propagate

17

21

2

2

0

1

Simulate
long
enough to
let spikes
propagate

18

3

21

2

2

3

3

0

1

3

Simulate
long
enough to
let spikes
propagate

19

3

2

4

1

2

2

3 4

3

0

1
4

3

Simulate
long
enough to
let spikes
propagate

20

3

2

4

5
1

2

2

3

5

4

3

0

1
4

5

3

Simulate
long
enough to
let spikes
propagate

21

3

2

4

5
1

2

2

3

5

4

3

0

1
4

5

6

3

Read out
spike times
and
updated
graph

22

Neighborhood Subgraph Extraction

• Initial Graph G to Network N:
– Vertex in G  Neuron in network N with threshold of 1 and refractory period of

1
– Edge in G  Synapse in network N with weight of 1 and delay of 2

23

Neighborhood Subgraph Extraction

• Initial Graph G to Network N:
– Vertex in G  Neuron in network N with threshold of 1 and refractory period of

1
– Edge in G  Synapse in network N with weight of 1 and delay of 2

• Steps for neighborhood subgraph extraction
1. Stimulate source neuron
2. Simulate for two time steps
3. Read out spike times to determine nodes in subnetwork NS

4. Update graph so that threshold of all other neurons outside of NS is too high
to fire

5. Simultaneously fire all neurons in set NS and simulate for two time steps.
6. Read out graph to get potentiated edges, which are the edges for the

subgraph

24

Stimulate
source
neuron

25

Simulate to
get
immediate
neighbors

26

Read out
which
neurons
spiked

27

Update
graph to
set high
thresholds
for other
neurons

28

Update
graph to
set high
thresholds
for other
neurons

29

Fire all
neurons
that spiked

30

Fire all
neurons
that spiked

31

Read out
updated graph
to find
neighborhood
edges

32

Neuromorphic/CPU Breakdown

Shortest Path Neighborhood
Subgraph Extraction

Spiking Neuromorphic
Co-Processor (SNC)
Run Time

O(|E(G|) O(1)

CPU Run Time O(|E(G)|) O(|V(G)|+|E(G)|)
CPU -> SNC Network
Loads

1 2

SNC -> GPU Network
Reads

1 1

33

Real-World Graphs

Graph Type Vertices Edges
roadNet-CA Undirected 1,965,206 2,766,607
Ca-HepPh Undirected 12,008 118,521
Amazon0621 Directed 403,394 3,387,388

• roadNet-CA: Road network in California

• Ca-HepPh: Collaboration network graph from the high energy
physics topic on Arxiv

• Amazon0621 – Amazon co-purchasing network from June 1, 2003

34

Energy Estimates for Each Graph

roadNet-CA ca-HepPh amazon0601
Shortest Path 161.35 J 48.85 mJ 21.28 J
Neighborhood 58.32 μJ 999.14 nJ 12.56 μJ

35

Energy Estimates for Each Graph

roadNet-CA ca-HepPh amazon0601
Shortest Path 161.35 J 48.85 mJ 21.28 J
Neighborhood 58.32 μJ 999.14 nJ 12.56 μJ

0
20
40
60
80

100
120
140
160
180

Shortest Path - roadNet-CA

36

What about other hardware?

37

Types of Neuromorphic Implementations

SOENmrDANNADANNA2

• Mixed analog-digital
implementation

• Synapses implemented with
twin memristors

• Programmable

• Optoelectronic
• Neurons implemented using

superconducting
optoelectronics

• Delays are on neurons, not
synapses

• Fully digital implementation
• Two versions:

• DANNA2-dense is
programmable

• DANNA2-sparse is
application-specific

Mitchell, J. Parker, et al. "DANNA 2: Dynamic adaptive
neural network arrays." Proceedings of the
International Conference on Neuromorphic Systems.
ACM, 2018.

Chakma, Gangotree, et al. "Memristive mixed-signal
neuromorphic systems: Energy-efficient learning at the
circuit-level." IEEE Journal on Emerging and Selected
Topics in Circuits and Systems 8.1 (2018): 125-136.

Buckley, Sonia, et al. "Design of superconducting
optoelectronic networks for neuromorphic
computing." 2018 IEEE International Conference on
Rebooting Computing (ICRC). IEEE, 2018.

38

Another Example Benchmark Graph

• Example graph has 961 nodes and
2280 edges

• Graph is inspired by city-street
layouts with some one-way streets
and avenues and some two-way
streets

• Find shortest path from source node
to all other nodes

39

Shortest Path

Implementation Neurons Synapses Energy
DANNA2-dense 961 2280 8.27 uJ
DANNA2-sparse 961 2280 1.47 uJ
mrDANNA 961 2280 1.84 uJ
SOEN 3242 4560 0.0599 uJ

40

Summary
• Mapping non-machine learning tasks to neuromorphic systems is

non-trivial, even for graph algorithms where the mapping is relatively
natural.

• Different tasks can have radically different performance profiles.

• The goal of this work was not to give a direct comparison of
neuromorphic vs. CPU or GPU approaches to graph algorithms, but
we intend to plan to investigate that in future work.

Kathleen Hamilton, Tiffany Mintz, and Catherine Schuman. “Spike-based primitives for graph algorithms.”
Available on arXiv: https://arxiv.org/abs/1903.10574

https://arxiv.org/abs/1903.10574

41

Acknowledgements

• This work is funded by the Laboratory Directed Research and
Development Program of Oak Ridge National Laboratory.

• The research used resources of the Oak Ridge Leadership
Computing Facility.

Md Musabbir
Adnan

Garrett Rose Bon Woong
Kyu

Sung Kyu
Lim

Tiffany MintzKathleen
Hamilton

4242

International Conference on Neuromorphic Systems

• Join us at ICONS!
• July 23-25, 2019
• Knoxville, Tennessee
• Submission deadline:

– April 15, 2019
• Short and full papers
• Posters/short talk

submissions
• Tutorials and workshops
• Special sessions https://ornlcda.github.io/icons2019

4343

Thank you!
Email: schumancd@ornl.gov

Website: CatherineSchuman.com

	Shortest Path and Neighborhood Subgraph Extraction on a Spiking Memristive Neuromorphic Implementation
	TENNLab Neuromorphic Research
	What are Spiking Neuromorphic Systems?
	Properties of Spiking Neuromorphic Systems
	Slide Number 5
	Why do we care about non-neural network applications?
	How are spiking neuromorphic systems used?
	Example Non-Neural Network Applications
	Memristive Spiking Neuromorphic System
	How do you map a problem onto neuromorphic systems?
	Single Source Shortest Path Embedding
	Single Source Shortest Path Embedding
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Neighborhood Subgraph Extraction
	Neighborhood Subgraph Extraction
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Neuromorphic/CPU Breakdown
	Real-World Graphs
	Energy Estimates for Each Graph
	Energy Estimates for Each Graph
	What about other hardware?
	Types of Neuromorphic Implementations
	Another Example Benchmark Graph
	Shortest Path
	Summary
	Acknowledgements
	International Conference on Neuromorphic Systems
	Thank you!��Email: schumancd@ornl.gov�Website: CatherineSchuman.com

