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What are Spiking Neuromorphic Systems?

• Non von-Neumann computers inspired 
by biological brains

• Can perform certain workloads with 
significantly less power than traditional 
architectures

• Resurgence in neuromorphic systems in 
recent years due to the rise of machine 
learning and deep learning applications

Source: https://www.nextplatform.com/2016/02/09/the-second-coming-of-
neuromorphic-computing/
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Properties of Spiking Neuromorphic Systems

• Massively parallel computation

• Collocated processing and memory

• Simple processing elements that perform specific computations

• Simple communication between elements

• Event driven computation

• Stochastically firing neurons for noise

• Inherently scalable architectures
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Key research question: 
Can we use these properties 
for non-neural network and 
non-machine learning 
applications? 
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Why do we care about non-neural network 
applications?

?
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How are spiking neuromorphic systems used?

• Through January 2017, less than 1 
percent of the papers in 
neuromorphic computing that 
implemented an application did so 
with a non-neural network 
application

Source: Schuman, Catherine D., et al. "A survey of neuromorphic computing 
and neural networks in hardware." arXiv preprint arXiv:1705.06963 (2017).
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Example Non-Neural Network Applications

• Graph algorithms
– See Abdullahi Ali’s poster on network flow

• Scientific simulations

• Constraint satisfaction and optimization problems
– Several talks earlier this week (e.g., Sudoku and graph coloring)

• Solving partial differential equations through neural algorithms and 
Markov random walks
– See Leah Reeder’s poster and Brad Aimone’s talk yesterday

• Composite algorithms through utility and numerical kernels
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Memristive Spiking Neuromorphic System

• Leaky integrate-and-fire neurons with programmable thresholds and 
refractory periods

• Synapses with programmable delays and weights, and some form of 
STDP

Accumulation Fire Learning Idle
Neuron 9.81 pJ 12.5 pJ - 7.2 pJ
Synapse 1.45 pJ - 2.58 pJ 0.07 pJ

Source: 
• M. M. Adnan, S. Sayyaparaju et al., “A twin memristor synapse for spike timing dependent learning in neuromorphic systems,” in Proceedings of the 31st 

IEEE International System-On-Chip Conference (SOCC). IEEE, 2018. To appear.
• G. Chakma, M. M. Adnan et al., “Memristive mixed-signal neuromorphic systems: Energy-efficient learning at the circuit-level,” IEEE Journal on 

Emerging and Selected Topics in Circuits and Systems, vol. 8, no. 1, pp. 125–136, 2018.
• C. D. Schuman, R. Pooser et al., “Simulating and estimating the behavior of a neuromorphic co-processor,” in Proceedings of the Second International 

Workshop on Post Moores Era Supercomputing. ACM, 2017, pp. 8–14.
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How do you map a problem onto neuromorphic 
systems?

• Need to convert your problem into using neurons, synapses, and 
spikes

• Need to define:
– How to set up your network (network topology, parameters)
– Where/when spikes should be applied
– How long to run your neuromorphic systems
– Where/when to read and write network properties

• We’ll walk through two graph problems:
– Single source shortest path
– Neighborhood subgraph extraction
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Single Source Shortest Path Embedding

• Graph G to Network N:
– Vertex in G  Neuron in network N with 0 threshold and a long enough 

refractory period to make sure it fires only once
– Edge in G  Synapse in network N with weight of 1 and delay proportional to 

the length of the edge in G
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Single Source Shortest Path Embedding

• Graph G to Network N:
– Vertex in G  Neuron in network N with 0 threshold and a long enough 

refractory period to make sure it fires only once
– Edge in G  Synapse in network N with weight of 1 and delay proportional to 

the length of the edge in G

• Steps for shortest path algorithm:
1. Stimulate source neuron
2. Simulate for long enough a single spike travel along every edge in the 

network
3. Read out spike times and updated graph

1. Spike times of each neuron give the length of the shortest path from the source node to 
each destination node

2. Potentiated edges give shortest paths
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Neighborhood Subgraph Extraction

• Initial Graph G to Network N:
– Vertex in G  Neuron in network N with threshold of 1 and refractory period of 

1
– Edge in G  Synapse in network N with weight of 1 and delay of 2
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Neighborhood Subgraph Extraction

• Initial Graph G to Network N:
– Vertex in G  Neuron in network N with threshold of 1 and refractory period of 

1
– Edge in G  Synapse in network N with weight of 1 and delay of 2

• Steps for neighborhood subgraph extraction
1. Stimulate source neuron
2. Simulate for two time steps
3. Read out spike times to determine nodes in subnetwork NS

4. Update graph so that threshold of all other neurons outside of NS is too high 
to fire

5. Simultaneously fire all neurons in set NS and simulate for two time steps.
6. Read out graph to get potentiated edges, which are the edges for the 

subgraph
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Stimulate 
source 
neuron
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Simulate to 
get 
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Read out 
which 
neurons 
spiked



27

Update 
graph to 
set high 
thresholds 
for other 
neurons
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Fire all 
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Read out 
updated graph 
to find 
neighborhood 
edges
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Neuromorphic/CPU Breakdown

Shortest Path Neighborhood 
Subgraph Extraction

Spiking Neuromorphic 
Co-Processor (SNC) 
Run Time

O(|E(G|) O(1)

CPU Run Time O(|E(G)|) O(|V(G)|+|E(G)|)
CPU -> SNC Network 
Loads

1 2

SNC -> GPU Network 
Reads

1 1
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Real-World Graphs

Graph Type Vertices Edges
roadNet-CA Undirected 1,965,206 2,766,607
Ca-HepPh Undirected 12,008 118,521
Amazon0621 Directed 403,394 3,387,388

• roadNet-CA: Road network in California

• Ca-HepPh: Collaboration network graph from the high energy 
physics topic on Arxiv

• Amazon0621 – Amazon co-purchasing network from June 1, 2003
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Energy Estimates for Each Graph

roadNet-CA ca-HepPh amazon0601
Shortest Path 161.35 J 48.85 mJ 21.28 J
Neighborhood 58.32 μJ 999.14 nJ 12.56 μJ
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What about other hardware?
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Types of Neuromorphic Implementations

SOENmrDANNADANNA2

• Mixed analog-digital 
implementation

• Synapses implemented with 
twin memristors 

• Programmable 

• Optoelectronic 
• Neurons implemented using 

superconducting 
optoelectronics

• Delays are on neurons, not 
synapses

• Fully digital implementation
• Two versions: 

• DANNA2-dense is 
programmable

• DANNA2-sparse is 
application-specific

Mitchell, J. Parker, et al. "DANNA 2: Dynamic adaptive 
neural network arrays." Proceedings of the 
International Conference on Neuromorphic Systems. 
ACM, 2018.

Chakma, Gangotree, et al. "Memristive mixed-signal 
neuromorphic systems: Energy-efficient learning at the 
circuit-level." IEEE Journal on Emerging and Selected 
Topics in Circuits and Systems 8.1 (2018): 125-136.

Buckley, Sonia, et al. "Design of superconducting 
optoelectronic networks for neuromorphic 
computing." 2018 IEEE International Conference on 
Rebooting Computing (ICRC). IEEE, 2018.



38

Another Example Benchmark Graph

• Example graph has 961 nodes and 
2280 edges

• Graph is inspired by city-street 
layouts with some one-way streets 
and avenues and some two-way 
streets

• Find shortest path from source node 
to all other nodes
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Shortest Path

Implementation Neurons Synapses Energy
DANNA2-dense 961 2280 8.27 uJ
DANNA2-sparse 961 2280 1.47 uJ
mrDANNA 961 2280 1.84 uJ
SOEN 3242 4560 0.0599 uJ
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Summary
• Mapping non-machine learning tasks to neuromorphic systems is 

non-trivial, even for graph algorithms where the mapping is relatively 
natural.

• Different tasks can have radically different performance profiles.

• The goal of this work was not to give a direct comparison of 
neuromorphic vs. CPU or GPU approaches to graph algorithms, but 
we intend to plan to investigate that in future work.

Kathleen Hamilton, Tiffany Mintz, and Catherine Schuman. “Spike-based primitives for graph algorithms.” 
Available on arXiv: https://arxiv.org/abs/1903.10574

https://arxiv.org/abs/1903.10574
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International Conference on Neuromorphic Systems

• Join us at ICONS!
• July 23-25, 2019
• Knoxville, Tennessee
• Submission deadline: 

– April 15, 2019
• Short and full papers
• Posters/short talk 

submissions
• Tutorials and workshops
• Special sessions https://ornlcda.github.io/icons2019
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Thank you!
Email: schumancd@ornl.gov

Website: CatherineSchuman.com
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