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Disclaimers & Apologies

« This work is neuro-inspired but it is not
neuromorphic
= Not at the level of neurons & synapses

% Strong opinion: Neuroscience can provide
great insights & ideas to ML/AI beyond
the level of neurons and synapses

= Network neuroscience

= Cognitive neuroscience

= Evolutionary neuroscience

= Neurology & psychiatry



Unsupervised Continual Learning (UCL)

» Learn efficient data representations from
stream of unlabeled data

= No labeled data in stream

= No specific task or reward signal given

= Class/data distribution is non-stationary
= No storage/replay of past inputs




Occasionally, create associations
between learned representations and
named concepts/classes

» GaveporeggrenaextPabeled data (1 per class?)

* Labeled data does not change representations
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What UCL is NOT

+ Representation learning
= Typically does not operate in online context

+ Supervised continual learning
= Learns continually from stream of labeled data

+ Semi-supervised learning
= Learns from both labeled and unlabeled data

+ Self-supervised learning

= Relies strictly on prediction - does not learn
associations



Arguably, UCL is how natural
organisms learn most of the time



What we borrow from neuroscience

Hierarchical organization between RS RSR:1 SEEEs Wy (ALY A K
(1918 - 2015)

cortical areas with feedforward
feedback connections

Mountcastle: cortical columns
perform an (unknown) common
function across cortex

The "canonical cortical circuit” of
Douglas & Martin

Intra-column recurrent circuits
and role of inhibitory neurons

Friston: cortical columns perform
predictive coding

Cortical columns appear to learn
"prototypes” - see Tanaka '96 for
monkey IT experiments Hebbian W

E/I recurrent circuits (similar to
L4) can perform k-means online
clustering (Pehlevan et al. '18)
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Self-Trained Associative Memory (STAM)

Architecture Overview

Centroids at Layer-2: C, Centroids at Layer-3: C;

Centroids at Layer-1: C,

Intrinsic i Novelty Forgetting Prediction &

detection mechanism feedback

dimensionality learning of
reduction centroids




Tllustration of how STAMs work

Cc(X4)=Ya4

Y3 =X4

+ Gradual reduction of intrinsic dimensionality

= If there are N centroids at a layer, and that layer
consists of M STAMS (or RFs), the output image at
that layer can take NM possible values

= Deeper in hierarchy: N increases, M decreases (so that
NM decreases)



Key equations

« Centroid selection:

o(zim) =arg min ||zim —wi]|

» Centroid online learning:
wij =aTim+ (1 —a)w;j,whenc(z;m)=7j

+» Centroid novelty detection:

pj = a||Tim — wijl|| + (1 —a)p;

g = .:1-| ||J31m — wi.,j” — | T (1 - H}f’j
|Ti,m — wi j|| > pj + 3 0;

» Centroid forgetting:

= when capacity of N centroids at a layer is reached, forget
Least Recently Used centroid



The role of top-down predictions

LEVEL 1
STAMs

Input stimulus LEVEL 2

STAM
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Phase-1: stream of Os & 1s

Phase 1 Unlabeled Data Stream Samples (5000 Images Seen)
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Phase-1 evaluation given a couple of
labeled examples




Phase-2: stream of {0,1,2,3}

Phase 2 Unlabeled Data Stream Samples (10000 Images Seen)
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Phase-2 evaluation given a couple
of labeled examples

Clue: Quiz:
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Phase-5: stream of {0,1,..9}

Phase 5 Unlabeled Data Stream Samples (45000 Images Seen)

L1 Centroid Samples

L2 Centroid Samples

L3 Centroid Samples

L4 Centroid Samples
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Phase-5 evaluation given a couple
of labeled examples per class

Clue: Quiz:
[ 1»)46]1715

seven four nine five two
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six eight one zero five
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three three six eight two




Accuracy as the system learns more
classes

Accuracy vs Learning Phases
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STAM hierarchy performs best for the entire scenario



Accuracy as function of number of

Accuracy (%)

labeled examples

Final Accuracy vs Labeled Examples per Class
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Next Steps

+ Work with natural image datasets and
video

+ Compare with additional baseline methods
compatible with UCL problem

+ Generalize classification to use centroids

from any layer in hierarchy

+ Apply in video and timeseries problems
(where prediction and top-down
connections can play major role)
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