Unsupervised Dictionary Learning For Neuromorphic Processors

Yijing Watkins, Austin Thresher, Pete Schultz, Andreas Wild, Andrew Sornborger, Edward Kim, Garrett Kenyon

NICE Workshop March 28, 2019

What is Sparse Coding?

First introduced by Olshausen & Field (Nature, 1996)

Unsupervised feature learning algorithm

Use an overcomplete set of feature vectors to find sparse coefficients.

Human visual system

[2015 Miguel Perello Nieto, distributed under Creative Commons Attribution-Share Alike 4.0 International license

Non-Spiking LCA Dictionary Learning

Doesn't support dictionary learning Rozell, et al. Neural Computation 2008

P. Schultz, et al. arXiv. 2014

Non-Spiking LCA Applications

Live Event-based Video Interpolation

On Input

Off Input

Reconstruction

Y. Watkins, D. Mascarenas and G. Kenyon, "Sparse Coding Enables the Reconstruction of High-Fidelity Images and Video from Retinal Spike Trains", in Proceedings of 2018 Neuromorphic Computing, Knoxville, Tennessee, July 23-26, 2018.

Non-Spiking LCA Applications

Online Depth Sensing

Lundquist, S. Y., Mitchell, M., Kenyon, G.T., Sparse Coding on Stereo Video for Object Detection, arXiv:1705.07144, 2017; workshop on Learning with Limited Labeled Data: Weak Supervision and Beyond, NIPS 2017.

Towards Spiking LCA Dictionary Learning on Loihi: Constraints and Solutions $\Delta \Phi \propto T(u) \otimes \{I - \Phi T(u)\} - f(\Phi)$

Constraint 1: Can't perform transpose operation Solution: Learn both the weight matrix (Φ) and the transpose (Φ^{T}) as separate plastic connections but initialized as transposes of each other $\Psi_{0} = \Phi_{0}^{T}$

 $f(\Phi)_{ij} = |\Phi_{ij}|\Phi_{ij}$

Constraint 2: Can't normalize weights $||\Phi||_2=1$ during training Solution: Decrease LCA threshold when a neuron spikes, and slowly increase towards original threshold in between spikes. Weights decay at a rate proportional to the square of weights.

Constraint 3: Both positive and negative values must be represented by spikes

Solution: Modulate firing relative to a baseline rate for representing positive and negative values

Constraint 4: Low precision (8-bit) weights Φ Solution: Attractor dynamics

Spiking Unsupervised Dictionary Learning Results

Recon

Residual

Input

Learning a dictionary over one epoch.

Conclusion

Implemented LCA model that supports on-line unsupervised dictionary learning

Dictionary learning applications: Video interpolation, depth sensing

Constraints and solutions

Dictionary learning and sparse solving results

