

Binding of Sparse Distributed Representations in Hierarchical Temporal Memory

Luke Boudreau Advisor: Dhireesha Kudithipudi Neuromorphic AI Lab Rochester Institute of Technology

Hierarchical Temporal Memory

HTM Structure

- Pyramidal neurons (cells) form Columns
- A collection of *Columns* form a *Region*, which models a *Cortical Column* or layers 2/3 of the Neocortex

HTM theory is continually evolving

- HTM has two major algorithm portions
- Spatial Pooler processes Feedforward Input
- Temporal Memory processes Feedforward & Contextual Input
- Numenta (*Jeff Hawkins et. al*) is driving the HTM research

HTM Spatial Pooler

Spatial Pooler Structure

- Columns of cells become active with sufficient feedforward input
- Each *cell* in a *column* receives the same feedforward input
- Input flows through *proximal synapses*
- Hebbian learning governs connectivity of *proximal synapses*
- Online learning adapts to changes in input data

Binary Input

Sparse Distributed Representation (SDR)

Sparse Distributed Representations are core part of HTM

- Large Binary Vector (2048 bits; the number of *columns* in the *Region*)
- Sparsity ~ 2% (low # of '1's)
- Distributed: non-localist and resilient to noise

Spatial Pooler learns to map similar inputs to similar outputs

- Two inputs that are similar should have some degree of overlap in their SDRs
- Similarity between SDRs can be computed with a dot product

Spatial Pooler Algorithm

Spatial Pooler Algorithm

- 1. Overlap
- 2. Inhibition
- 3. Learning

Notation:

- Input $\boldsymbol{X} \in \{0,1\}^{m imes q}$
- Proximal Synapses $\mathbf{\Phi} \in \mathbb{R}^{m imes q}$
- Connected Synapses $oldsymbol{Y} \equiv \mathrm{I}(oldsymbol{\Phi}_i \geq
 ho_s) \ orall i_s$

$$\vec{\boldsymbol{\alpha}} \equiv \begin{cases} \vec{\hat{\boldsymbol{\alpha}}}_i \vec{\boldsymbol{b}}_i & \vec{\hat{\boldsymbol{\alpha}}}_i \geq \rho_d, \\ 0 & \text{otherwise} \end{cases} \forall i$$
$$\vec{\hat{\boldsymbol{\alpha}}}_i \equiv \boldsymbol{X}_i \bullet \boldsymbol{Y}_i$$

Inhibition $\vec{\hat{c}} \equiv \mathrm{I}(\vec{lpha}_i \geq \vec{\gamma}_i) \; orall i$

 $\vec{\gamma} \equiv \max(\operatorname{kmax}(\boldsymbol{H}_i \odot \vec{\boldsymbol{lpha}}, \rho_{\mathrm{c}}), 1) \; \forall i$

Learning $\Phi \equiv \operatorname{clip}\left(\Phi \oplus \delta \Phi, 0, 1\right)$

Mnatzaganian, James, Ernest Fokoué, and Dhireesha Kudithipudi. "A mathematical formalization of hierarchical temporal memory's spatial pooler." *Frontiers in Robotics and AI* 3 (2017): 81.

Motivation

- Numenta's research is focused on bioplausibility and emulation of the pathways in the Neocortex
- Binding operation is the basis for *Content Addressable Memory*, which could help facilitate long term storage and retrieval of SDRs
- Combine multimodal data without increasing dimensionality

Background on Binding

Binding problem for language and vision (Jackendoff 2003, Malsburg 1995)

- Vector Symbolic Architectures (Proposed by Gayler 2004)
- Vector operations (Binding, Superposition, and Permutation)
- Vectors are the same dimensionality; both atomic and complex representations

Different Implementations of VSA

- Holographic Reduced Representations (HRR)- Plate
- Binary Spatter Codes / Hyperdimensional Computing Kanerva
- Multiply, Add, Permute (MAP) Gayler

Binding – Binary Vectors

Sparse Binary Distributed Representations

- (Laiho & Kanerva 2015) proposed a binding operation for sparse binary distributed representations
- Segmentation of sparse binary vector
- *Maximally Sparse* requires controlled density
- Generalization of circular convolution for *Plate's* HRRs in the frequency domain.

Spatial Pooler – Maximally Sparse SDRs

Use Local Inhibition in the Spatial Pooler Algorithm

- Use neighborhood masks, H, to establish segments in the HTM Region
- Select the most active column in each neighborhood/segment instead of top k columns
- Initialization of column to input connectivity is based on the dataset. Requires a mapping that preserves the distributed nature (topology) of SDRs

FREAK – Fast Retina Keypoint

FREAK Encoding

- 512 bit binary descriptor
- Difference of Gaussians (No Backprop!)
- Coarse to fine grained information
- Inspired by the retina, but no biological significance

Encoding small NORB

FREAK Encoding of SPECIAL NORB 5 Categories, 5 Instances, 9 Elevations, 18 Azimuths, 1 Lighting

Spatial Pooler – Learning Metrics

Spatial Pooler performance while training:

- Local Inhibition has less column participation because of the stricter inhibition rule
- Local Inhibition doesn't fully stabilize after one epoch because of random selection between columns with equal overlap/activation levels.

Spatial Pooler – Cluster Analysis with t-SNE

Entangled Nature of SDRs:

- Global Inhibition produces more entangled representations than the raw FREAK Descriptors
- Local Inhibition helps preserve more of the class similarity (i.e. larger and identifiable clusters)

Binding Experiments

Binding Location & Feature SDRs

- Bind each features SDR with a location SDR (Supervised)
- Randomly generate 18 maximally sparse SDRs for each possible azimuth

Azimuth 0

Binding & Superposition

- Integrate the bound representation as a rotation around the object (repeat for each elevation)
- Superposition of SDRs (Logical **OR**)

Rotation SDR =
$$\sum_{a=0}^{17} C_a$$

Binding Feature & Location SDRs

Bound Feature & Location SDRs

- Same Dimensionality and Sparseness as component SDRs
- These SDRs are Content Addressable:
 - Unbind with an azimuth SDR => "What feature(s) is located at this Azimuth?"
 - Unbind with a feature SDR => "What azimuth(s) is associated with this feature?"

Binding & Superposition

Left: Superposition of Features without binding

- Larger density (~16% active bits)
- SDRs from different class/instances are similar (more overlapping bits)

Right: Superposition of Features bound with corresponding azimuth.

- Much larger density (~50% active bits)
- Binding gives more structure to superimposed representations

Conclusions

Basis for Content Addressable Memory

- Binding can give structure to entangled representations, but requires a supervised approach
- Density of superimposed representations will be a limiting factor for recall or retrieving vectors from superimposed SDRs
- Novel vector, non-similar to either component

Local Inhibition

 Minor modification to inhibition in Spatial Pooler Algorithm