
Binding of Sparse Distributed Representations in 
Hierarchical Temporal Memory

Luke Boudreau
Advisor: Dhireesha Kudithipudi

Neuromorphic AI Lab
Rochester Institute of Technology

1
Supported By:



Hierarchical Temporal Memory
HTM Structure

• Pyramidal neurons (cells) form Columns
• A collection of Columns form a Region, which models a 

Cortical Column or layers 2/3 of the Neocortex

HTM theory is continually evolving
• HTM has two major algorithm portions
• Spatial Pooler - processes Feedforward Input
• Temporal Memory - processes Feedforward & 

Contextual Input
• Numenta (Jeff Hawkins et. al) is driving the HTM 

research
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HTM Spatial Pooler

Spatial Pooler Structure
• Columns of cells become active with sufficient 

feedforward input
• Each cell in a column receives the same feedforward 

input
• Input flows through proximal synapses
• Hebbian learning governs connectivity of proximal 

synapses
• Online learning - adapts to changes in input data
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Sparse Distributed Representation (SDR)

Sparse Distributed Representations are core part of HTM
• Large Binary Vector (2048 bits; the number of columns in the Region)
• Sparsity ~ 2% (low # of ‘1’s)
• Distributed: non-localist and resilient to noise

Spatial Pooler learns to map similar inputs to similar outputs
• Two inputs that are similar should have some degree of overlap in their SDRs
• Similarity between SDRs can be computed with a dot product
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Spatial Pooler Algorithm
Spatial Pooler Algorithm

1. Overlap
2. Inhibition
3. Learning

Notation:
• Input

• Proximal Synapses

• Connected Synapses 
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Overlap

Inhibition

Learning

Mnatzaganian, James, Ernest Fokoué, and Dhireesha Kudithipudi. "A mathematical formalization of hierarchical temporal memory’s spatial 
pooler." Frontiers in Robotics and AI 3 (2017): 81.



Motivation

• Numenta’s research is focused on 
bioplausibility and emulation of the 
pathways in the Neocortex

• Binding operation is the basis for 
Content Addressable Memory, which 
could help facilitate long term 
storage and retrieval of SDRs

• Combine multimodal data without 
increasing dimensionality
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Background on Binding
Binding problem for language and vision (Jackendoff 2003, Malsburg 1995)

• Vector Symbolic Architectures (Proposed by Gayler 2004)
• Vector operations (Binding, Superposition, and Permutation)
• Vectors are the same dimensionality; both atomic and complex representations

Different Implementations of VSA
• Holographic Reduced Representations (HRR)- Plate
• Binary Spatter Codes / Hyperdimensional Computing – Kanerva
• Multiply, Add, Permute (MAP) – Gayler
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Binding – Binary Vectors
Sparse Binary Distributed Representations

• (Laiho & Kanerva 2015) proposed a binding 
operation for sparse binary distributed 
representations

• Segmentation of sparse binary vector

• Maximally Sparse – requires controlled 
density

• Generalization of circular convolution for 
Plate’s HRRs in the frequency domain.
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Spatial Pooler – Maximally Sparse SDRs
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Use Local Inhibition in the Spatial Pooler Algorithm
• Use neighborhood masks, H, to establish segments in the HTM Region
• Select the most active column in each neighborhood/segment instead of top k columns
• Initialization of column to input connectivity is based on the dataset. Requires a 

mapping that preserves the distributed nature (topology) of SDRs



FREAK – Fast Retina Keypoint
FREAK Encoding

• 512 bit binary descriptor
• Difference of Gaussians (No Backprop!)
• Coarse to fine grained information
• Inspired by the retina, but no biological 

significance

Encoding small NORB
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Spatial Pooler – Initialization
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FREAK Descriptor

HTM Columns

Coarse Fine

Significant Hyperparameters:
• 2048 columns (mini-columns)​
• 64 active bits (~3% Sparsity)​
• 1 epoch of learning on NORB 

training set​



Spatial Pooler – Learning Metrics
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Spatial Pooler performance while training:
• Local Inhibition has less column participation because of the stricter inhibition rule
• Local Inhibition doesn’t fully stabilize after one epoch because of random selection 

between columns with equal overlap/activation levels.
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Spatial Pooler – Cluster Analysis with t-SNE
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Entangled Nature of SDRs:
• Global Inhibition produces more entangled representations than the raw FREAK Descriptors
• Local Inhibition helps preserve more of the class similarity (i.e. larger and identifiable clusters)



Binding Experiments
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Binding Location & Feature SDRs
• Bind each features SDR with a 

location SDR (Supervised)
• Randomly generate 18 maximally 

sparse SDRs for each possible 
azimuth

Binding & Superposition
• Integrate the bound representation 

as a rotation around the object 
(repeat for each elevation)

• Superposition of SDRs (Logical OR)
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Binding Feature & Location SDRs 
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• Same Dimensionality and Sparseness as component SDRs
• These SDRs are Content Addressable:

• Unbind with an azimuth SDR => “What feature(s) is located at this Azimuth?”
• Unbind with a feature SDR => “What azimuth(s) is associated with this feature?”



Binding & Superposition
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Left: Superposition of Features without binding
• Larger density (~16% active bits)
• SDRs from different class/instances are similar (more overlapping bits)

Right: Superposition of Features bound with corresponding azimuth.
• Much larger density (~50% active bits)
• Binding gives more structure to superimposed representations



Conclusions
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Basis for Content Addressable Memory
• Binding can give structure to entangled 

representations, but requires a supervised approach 
• Density of superimposed representations will be a 

limiting factor for recall or retrieving vectors from 
superimposed SDRs

• Novel vector, non-similar to either component

Local Inhibition
• Minor modification to inhibition in Spatial Pooler 

Algorithm
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