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Origins of Imaging

illum in tabula per radios Solis, quam in ceelo contin-
git:hoceft,fi in ceelo fuperior pars deliquiii pariatur,in
radus apparcbirinferior dehcere,vi rano exigitoprica.

_I‘;:E M%-f:{m C? l.:|"

...l_r

Sic nos exadté Anno . 1544 . Louanii eclipfim Solis
obleruauimus , inuenimusiy; deficere paulé pIus g dex-

* Invention of the camera obscura in 1544 (L. Da Vinci)
 The mother of all cameras
A more realistic and fast depiction of reality



Origins of Imaging

* Increasing painters profits: painting faster
e Evolution from portable models for travellers to current
digital cameras

« Evolving from canvas, to paper, to glass, to celluloid, to
pixels



Motion Picture: origins of video

Eadweard Muybridge
(1830-1904)

« Early work in motion-picture projection

e known for his pioneering work on animal locomotion in
1877 and 1878, which used multiple cameras to capture
motion in stop-motion photographs



http://en.wikipedia.org/wiki/Animal_locomotion
http://en.wikipedia.org/wiki/Motion_(physics)
http://en.wikipedia.org/wiki/Stop-motion

Neural acquisition
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 Amplitude sampling

* Information is sent when it happens

« When nothing happens, nothing is sent or processed
e Sparse information coding

e Time is the most valuable information




Event-based Cameras

Insightness

HILLHOUSE

SEE DIFFERENT, SEE FURTHER “

PROPHESCEC

METAVISION FOR MACHINES

e Event-based cameras have become a commodity




Data Space of Events
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Why Event Based sensors?

ATIS
VS.
Conventional Camera




Why Event Based sensors?

Conventional Camera Event based Camera

« Data driven: only moving edges produce data
e Temporal edges, precisely timed
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Why Event Based sensors?




Why Event Based sensors?
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What can not be Event based computation?

e Creating frames from events at the cost of heavy computation costs
e Using CNN and artificial binary frames



What can not be Event based computation?

e Creating frames from events at the cost of heavy computation costs
e Using CNN and artificial binary frames



Neuromorphic engineering

\M é o Hardware é YDOTICS
e < Computation

» Makes of machine vision a science!
* Develop new bidirectional methodology to understand the brain
e Merging Computational and Biological Vision



Applications: Stereovision

e Matching binocular events only using the time of events
e Two events arriving at the same time and fulfilling geometric
constraints are matched
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Optical flow

time

« High temporal resolution allows to generate smooth space-time surface
« The slope of the local surface contains the orientation and amplitude of the
optical flow



Visual Motion flow:

For an incoming event :
ep,t) = (p,t)’

Form the surface (image of times):
>e:R? 5 R?
p —> t - ZQ.

We then have:

X » YO
az S =

vy(xo,y)’






projection system

electrodes

microscope

— Multichannel system 16*16 electrodes
— Visual stimulation frequency up to 1ms
— 20kHz recording precision of neural activities



median normal flow for events with negative polarity







Rewriting the whole computer vision

High Speed Event-based Face Detection
in the Blink of an Eye




Dynamic Machine Learning: time surfaces

(a) Event-driven time-based
vision sensor (ATIS or DVS)

(f) Time surface

0 x (spatia)
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(d) Time context
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HOTS: A Hierarchy Of event-based Time-Surfaces
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Renaissance of Event-based computing

Computer

Parallel
Fluid

Aanunaon

Von Neumann

Artificial Neural
Architecture

processors
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Neuromorphic Computing, an old story!
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Neurons (i) Yij

Post-Synaptic

+Historical memory
*Analog levels

Warren McCulloch

Wij

N

.

Vi= E-w,j X T
=0

Biological neural network [1] W. S. McCulloch and W. Pitts, “A logical calculus of the
ideas immanent in nervous activity,” Bull. Math.
Biophysics, no. 5, pp. 115-133, 1943.

Synapse  Neurons())

4 Neurons(k)
ynapse .
Bz

A Logical Caleulus of Ideas Immanent in Nervous Activity A Logical Calenlus of ldeas Immanent in Nervous Activity

N

observations and of these 1o the facts is all too clear, for it is ap- |
parent that every idea and every sensation is realized by activity ]
within that net, and by no such activity are the actual afferents |
fully determined. |

There is no theory we may hold and no ohservation we can make |
that will retain so much as its old defective reference to the facts ':
if the net be altered. Tinnitus, paraesthesias, hallucinations, de- |
lusions, confusions and disorientations intervene, Thus empi |
confirms that if our nets are undefined, our facts are undefined, |
and w0 the “real” we can attribute not so much as one gual
or “form.” With determination of the net, the unknowable object |
of knowledge, the “thing in itself,” ceases to be unknowable.

To psychology, however defined, specification of the net would
contribute all that could be achicved in that field—even if the
analysis were pushed to ultimate psychic units or “psychons,” for
a psychon can be no less than the activity of a single neuron.
Since that activity is inherently propositional, all psychie events 1
have an intentional, or “semiotic,” character. The “all-or-none’” |
law of these activities, and the conformity of their relations to |
those of the logic of propositions, insure that the relations of |

\

Activation
Function

Potential
z; = f(V5)
i) >

Artificial neural network

. EXPRESSION FOR THE FIGURES

In the figure the neuron & Is always marked with the numeral & upon the
body of the cell, and the corresponding action is denoted by ‘N with 1 as sub-
script, as in the text.

Figure 12 Naff) . Nt = 1)
Figure 1 Nt}
Figure 1c N(t) . =

Figure 1d N

Figure 1= ]
Figure 17 — 1Nt =) .7 Nt —1) -
1)
N . NVNr -2 v . Nt = 2.
-2
Figure 1y N

Figure 1h J

Walter Pitts Frovas 1 Figure 1i

(Slide adapted from Christian Gamrat's ESSDERC 2012 presentation)



Perceptron: first neuromorphic engine

Perceptron

40N

(Robert Hecht-Nilsen:
Neurocomputing, Addison-
Wesley, 1990)

Frank Rosenblatt

[1] F. Rosenblatt, “The perceptron: a
probabilistic model for information storage and
organization in the brain.,” Psychological
Review, vol. 65, no. 6, pp. 386-408, 1958.

Faychological Review
\f:’l‘fll-!, o 6, 1958

THE PERCEFTRON: A PROBABILISTIC MODEL FOR
INFORMATION STORAGE AND ORGANIZATION
IN THE BRAIN'!
F. ROSENBLATT
Cornell Aeronawlical Laboralory

If we are eventually to understand
the capability of higher organisms for
perceptual recognition, generalization,
recall, and thinking, we must first
have answers to three fundamental
questions:

1. How is information about the
physical world sensed, or detected, by
the biological system?

2, In what form is information
stored, or remembered ?

3, How does information contained
in storage, or in memory, influence
recognition and behavior?

and the stored pattern. According to
this hypothesis, if one understood the
code or "wiring diagram®* of the nerv-
ous system, one should, in principle,
be able te discover exactly what an
organism remembers by reconstruct-
ing the eriginal sensory patterns from
the “memory traces' which they have
left, much as we might develop a
photographic negative, or translate
the pattern of electrical charges in the
“memory” of a digital computer.
This hypothesis is appealing in its
simplicity and ready intelligibility,
and a large family of theoretical brain

(Slide adapted from Christian Gamrat's ESSDERC 2012 presentation)



The big depression of the 1970’s

Minsky an Papert’s book on Perceptrons is
seen by many as the cause of the drop in ANN

[1] M. L. Minsky and S. A. Papert, Perceptrons:
An Introduction to Computational Geometry.
The MIT Press, 1970.

research (the XOR problem)

Marvin Minsky & Seymour Papert
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Book Reviews

standing of Information Processes

- in some fived way, the «, and ask if

the evidence adds up 10 enough, 0, to

* warrant saying that X is an instance

of the pattern (equivalently, deciding
yes). Although this corresponds 1o the
oft-expressed intuitive notion that judg-
ments are made by “weighing the
cvidence,” it must be made clear that

ings, percepirons are an extremely restricted

figure. Let there be a sot of predicates,
call them @, which one can think of
a5 clementary measurements on the
space R. Then a perceptron is & predi-
cate which can be represented in the
form:

0 b5 true i} aldety > 0
b

s false it ) olshelt) =0
w

where the coeflicients, a, and the thresh-

class of decision devices. In most real
decisions there is much exploring of
consequences, returning for new infor-
mation, redefinition of the situation,
and so on. None of these processes find
expression in the perceptron, as formu-

. lated, Nevertheless, perceptrons still

constitute & nontrivial type of decision
clement, and—as Minsky and Papert
note—if we cannot understand the be-
havior of perceptrons we have litle
chanee with the more complex decision

processes.

“The book states and proves a large
number of theorems about perceptrons.
For any interesting theory, onc must

. restrict the elementary measurements

(the $), since otherwise the whole
burden of the decision could be put on
them, the combinational aspect that is
the essence of the definition thus being
bypassed entirely. Two restrictions. are
proposed: diameter-limited perceptrons,
in which the points on which a & de-
pends must all Tie within a circle of
given diameter (though the whele col-
lection of 4 can cover R many times
over): and order-limired perceptrons,
in which the number of points on whish
a ¢ depends must be less than & given
number (though the points can be lo-
eated anywhere on the retina). Both
restrictions fit an intuitive notion that
the 4 are somehow simple, limited and
sa

old, #, arc real numbers and the values

(Slide adapted from Christian Gamrat's ESSDERC 2012 presentation)

ceptron that can recognize when a
figure is connected, as oppased to being
disconnected. This holds for both di-
ameterdimited and order-imited per-
ceptrons, though the proof for the first
is direct and for the latter quite com-
plex. In general the results are of this
negative character. For instance, it is
possible for there to be perceptrons of
order 1 for two predicates, yet no per-
ceptron of finite order that will rec-
ognize the disjunction (or, similarly,
the conjunction) of the two predicates,
In the development of the theory. some
powerful tools are constructed. Perhaps
the most central i¢ the group-invariance
theorem, which states that if & percep-
ron is to be invariant over a (finite)
group of transformations. on the retina,
then there must exist a_particularly
simple form of the weighed sum
(namely, where all coefficients of those
¢ which are equivalent under the group
are the same). The power of this
theorem arises from the close connec.
lion between notions of what is inter-
esting geometrically and properties that
are invariant under groups of trans-
formation. ‘Thus the thearem reflects
something of the geometry of the rot-
ina in the algebraic structure of the
perceptron.

Still other results concern the fact
that though order-limited perceptrons
exist for some classes of patterns, their
coeflicients (more precisely, the ratio
between the smallest and largest coeffi-
cient) may be exceedingly large—so
large, indeed, that one might as well
store the instances directly, since that
would requite fewer bits than storing
the cocflicients. There is a chapier on
learning in pérceptrons in which one
considers the ¢ fixed and asks what
proccdurcs might discover appropriate
weights 1o do a_particular pattern-
recognition task. The information from
which the weights arc inferred is &
sequence of instances of the patterns.
There is a perceptron convergence the-
orem which states that a particularly

simple form of feedback modification
of the weights under the impact of the
sequence will indeed find a workable
set of weights if such exists, Finally,
there Is & comparison of the percepiran

i ous highly serial algorithms
cr eain nf tha samma binds

[1] K. Fukushima, “Neocognitron: A self-
organizing neural network model for a
mechanism of pattern recognition unaffected
by shift in position,” Biological Cybernetics,
vol. 36, no. 4, pp. 193-202, 1980.



1980’s Neurocomputers...

Siemens : MA-16 Chips (SYNAPSE-1 Machine)

— Synapse-1, neurocomputer with 8xM-A16 chips

— Synapse3-PC, PCl board with 2xMA-16 (1.28 Gpcs)
Adaptive Solutions : CNAPS

— SIMD // machine based on a 64 PE chip.
IBM : ZISC

— Vector classifier engine
Philips : L-Neuro (M. Duranton)

— 1st Gen 16PEs 26 MCps

— 2nd Gen 12 PEs 720 MCps .
+ Intel (ETANN), AT&T (Anna), Hitachi (WSI), NEC, Thomson (now s
THALES), etc...

(Slide adapted from Christian Gamrat's ESSDERC 2012 presentation)



How to encode numbers with neurons?

Necessity to find an alternative to binary

Development of Elementary Numerical
Abilities: A Neuronal Model

Stanislas Dehaene
INSERM and CNRS, Paris

Jean-Pierre Changeux
Institut Pasteur, Paris

Average activity
’

1 2

1 2 58 4 58 8 7 8 39111278 115
cluster #

Figure 4. Average activity of numerosity clusters when random sets
of 1,2, 3, 4, or 5 objects were presented for input. For each input
numerosity, only a small number of clusters were seleatively activated
(eg., clusters 1, 2, and 3 responded only when a single object was
presented). The activity peaks were lower and wider for larger nu-
merosities, implying a decrease in discriminability with increasing
numerosity (Fechner’s law).



How to encode numbers ?

We; Tsyn
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ARTICLE Communicated by Terrence Sejnowski

STICK: Spike Time Interval Computational Kernel, a
Framework for General Purpose Computation Using
Neurons, Precise Timing, Delays, and Synchrony

Xavier Lagorce

xavier.lagorce@upme.fr e I eme nta ry un it S

Ryad Benosman
ryad.benosman@upme.fr
V-synapse ,__| —
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Compute Maximum

larger2

O. V-synapse delay Ty,

inputl

input2

largerl

larger2

output

1 2 >
tinl tinl

1 2 i

LL1112 tinZ
1 >

tlargerQ
1 2 >
tout tout
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Storing information: an inverting Memory network

V
(wi;Tsyn> ‘}
R T >
recall 1|
trecall
first ' - > {
tﬁrst
(we; 2'Tsyn +Tneu)
last T
last
AV N 2 2 ltl > !
Tm'ﬁ — ge ‘l’gategf st end sti end “acc
dge  _ | '
dt - 0 output - ;> t
d tout tout
a9r  _ _
\Tfa = gr
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Subtractor network
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Linear Combination network

— V_svnaps == V-s .
an > ¢ Vesynapse  TITQ Vesynapse
020 delay Ty, delay Toyn + Toin
........... — gsynapse 77 ge-synapse
delay Tsyn delay Tsyn + Tmin

We

Subs




Non-linearities: exponential

(1.5 = g+ gate.gs
dge —
e 0
d
\Tf'% = —9f
(wi;Tsyn>

_.C V-synapse _.O Je-Synapse

O -synapse
0. gate-synapse g JfSYnap
(gmult:]syn jmin>

(0.5we; Tyyn)

(we; 2.Tyyn)

input

first

last

acc

output

\/

1 2
in tin
T >
tﬁrst
1 >
tlast

\/
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Non-linearities: logarithm

( v _
Tm-gy = e T gate.gy
V
o= "| |
t
dgy input t ) >
\Tfa = —9f fiy fiy
first ' >
. t%’lrs
(U/lesyn) :0 V-synapse :2 Je-Synapse t
(e Ton + T :2 gate-synapse :2 g-synapse ]
accy +-syn min 1ast - ;
t
last
(we: Tsyn +Tmin) acc l >
1
tst ténd t;cc
(0.5we; Toym) output y ) >
(we; 2.Tym)
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Building a Multiplier network
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Integrating signals

_’O V-synapse ::ﬁ V-synapse
delay Tyyn delay Tsyn+Tmin

We

Constant 0
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Computing a first-order ODE

dX
— 4+ X(t) = X

0.8r¢

Different values of X 0015

0.6f

Constant 0
X

0.4}

0.21

C. V-synapse
delay Tiyn 0.0

118 neurons -02

0 15 20

5 10
Different values of 7
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Constant
0

Xoo

Computing a second-order OD

I X ¢ dX

Wi dt? ’

wo' dt

)
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N[ dt
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; We We We
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Simulating a Lorenz attractor

dX
— = oY(t) - X(t
2= ol¥()-X()
dY
- = ()Y - X(8).2(t)
dZ
- = XY -5z
:2 V-synapse “
delay Tyyn : =L ) “
’ e 280 neurons
Sync 01 I f dt 0 output
0, e
we[ fdt 0 output










& much more...

Decision making: game theory
stock Market
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Conclusions

A paradigm shift in Al

Operate on time rather than luminance information
Several possible sensors

Adapted to IOT and low power computation

Low data bandwidth

Outperforms conventional image based acquisition
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