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Some Problem Scenarios Requiring Efficient/Local Inference2

Application Relevant Constraints

Smartphones power, latency, bandwidth

Autonomous Vehicles latency

Supercomputing thermal

Security Systems on Backup Power power, interference

Imaging Satellites power, bandwidth

Micro-Drones power, latency, bandwidth, interference

Autonomous Hypersonics latency, interference

Nuclear Reactor Emergency Maintenance power, thermal, interference

Advanced Neuroprosthetics power, latency, thermal, privacy



Platforms Offering Efficient Low-Power Inference3

Continuous Spiking

NVIDIA Jetson TX1-2

Intel Movidius

Manchester SpiNNaker

IBM TrueNorth SNL STPU

Intel Loihi

Google TPU

Deep ANNs

Native

?



Some Challenges Porting “Traditional” Deep Nets to Spiking Hardware4

Traditional ANNs Spiking Nets

Continuous Activations Discrete/Binary “Spikes”

Global Clock-Driven Synchrony Local Event-Driven Asynchrony

Dense Matrix/Tensor Representations Sparse Synapse/Neuron Representations

Floating-Point Weight Precision Weights Often Fixed-Point

Individual “Neuron” Biases (Often Shared) Firing Thresholds

Batch Normalization Layers ???

?

• Spiking Hardware is Typically Designed for Neuro-Simulation.



Whetstone Overview

Whetstone provides a drop-in mechanism for tailoring a 
DNN to a spiking hardware platform (or other binary 
threshold activation platforms)
• Hardware platform agnostic
• Compatible with a wide variety of DNN topologies
• No added time or complexity cost at inference
• Simple neuron requirements: Integrate and fire



From Continuous Activations to Binary6

Traditional ANNs Spiking Nets

Continuous Activations Discrete/Binary “Spikes”

• During training, activations are gradually sharpened one-layer-
at-a-time, starting with the first.

• The rate of  sharpening can be determined adaptively based 
on changes in the loss.

• Result is a binary-activation quantized version of  the original 
network, which can be directly run in many kinds of  
neuromorphic hardware.

• These networks allow “single-pass inference”, where multiple 
“wave-fronts” can pass through the net simultaneously. This 
provides advantages in throughput, latency, and possibly 
energy usage, relative to rate-coded methods which must 
accumulate spikes for some period of  time.



7 How Whetstone Works (Animation GIF Format)

Legend for bars:

White: Spiking Accuracy   

Green: Non-Spiking Accuracy



Effective Across Various Topologies, Datasets, and Tasks

Semantic Segmentation (Trained on COCO Dataset; Videos from HMDB51 Dataset) 

Residual Networks with Skip Connections Autoencoders DQN



SpiNNaker (Case Study)9

•Optimized for biological real-time execution 
(“time models itself ”).

•Run spiking networks with biological timing 
and topological constraints.

• Well suited to robotics applications.

• Event-driven.

• Locally synchronous, globally asynchronous.

• Multicast packets with fixed routing tables.

• “SpiNNaker comes into its own when a 
problem can be cast into a form that requires 
many, many tiny asynchronous messages...” 
[6].



High-Throughput Binary-MNIST on SpiNNaker10

[input(785) -> dense(100) -> dense(100) -> dense(100)] x 190 Tiles

Between-Sample Delay: 2 miliseconds.
With Instant Decay Neuron ^^^

time_scale_factor: 5.0
Cores per tile: 4 

(1 per pop/layer including spike-source-array)
Core Usage: 760/760
Chips Usage: 48
Total Neurons: 57,000
Total Synapses: 97,617*190 = 18,547,230
Total runtime: 7:09 (includes setup, routing, and I/O)
Samples processed: 10,000
Samples per core: 52 -> 53
Inference time: 0.657 seconds.
Throughput: ~15,317 samples/second
Accuracy: ~94%



Convolutional Binary-MNIST on SpiNNaker11

time_scale_factor: 14.0
Temporal Groups: 20
Max-Neurons/Core: 255
Between-Sample Delay: 2ms * tsf = 28ms real-time.
Cores per tile: 371
Cores Used: 371/760 ~49%
Chips Used: 28/48 ~58%
Total Neurons: 47,640
Total Synapses: ~2,596,432
Samples processed: 10,000
Samples per tile: 10,000
Total runtime: 1:22:39 hours:minutes:seconds

(includes setup, routing, and I/O)
Inference time: 51:21 minutes:seconds
Throughput: ~3.25 samples/second
Latency: 1.694 seconds.
Accuracy: 98.10%

[Input(785) -> conv2d((5x5), 32) -> maxpool2d((2x2)) -> conv2d((5x5), 64) -> maxpool2d((2x2)) -> dense(500) ->  dense(100)] x 1 Tile



Porting Deep Nets to SpiNNaker using Whetstone (Overview)12

Remove Batch Normalization Layers

ANN with Binary Quantized 
Activations and Batch 
Normalization Layers

Convert from Tensor to Sparse Representation

Replace Biases with Bias Neurons

(Optional) Use Propagation Delays to Define Temporal 
Groups for Time-division Multiplexing

Convert to PyNN Representation and Load to 
SpiNNaker using SpyNNaker Library



13 Removing Batch Normalization Layers

Traditional ANNs Spiking Nets

Batch Normalization Layers ???



14 From Tensors to Neurons

Traditional ANNs Spiking Nets

Dense Matrix/Tensor Representations Sparse Synapse/Neuron Representations

Gotcha
The biological interpretation of  convolution 
requires a number of  neurons equal to the size 
of  the output tensor.

Layers can be converted to 
PyNN populations



15 Impact of Reduced Precision Weights

Traditional ANNs Spiking Nets

Floating-Point Weight Precision Weights Often Fixed-Point



16 Translating Biases

Traditional ANNs Spiking Nets

Individual “Neuron” Biases (Often Shared) Firing Thresholds

Gotcha
Though one can interpret biases as firing thresholds, 
PyNN and SpiNNaker make this approach impractical 
since thresholds are typically shared across all neurons 
of  a given population.

An alternative is to create a network of  explicit bias 
neurons. Bias neurons are daisy-chained from layer-to-
layer, with the first layer requiring an additional input 
to start it off.



17 Time-division Multiplexing (i.e. Temporal Groups)

Traditional ANNs Spiking Nets

Global Clock-Driven Synchrony Local Event-Driven Asynchrony

Gotcha
Sustained global synchrony is not guaranteed:
"Relative drift between boards is possible due 
to slight variations in clock speed (from clock 
crystal manufacturing variability), however, this 
effect is small relative to simulation times…"

Gotcha
Binary-activation ANNs require global 
synchrony to produce correct one-shot output. 
However, their real-time simulation produces 
synchronous bursts of  activity which can 
overload the communications fabric, breaking 
global synchrony. Time-division multiplexing 
using propagation delays is one way to mitigate 
this problem, but has performance tradeoffs.



Time-division Multiplexing (Animation)18



Time-division Multiplexing (Why it Works)19

• While SpiNNaker processes synaptic events 
asynchronously, neuron state updates are local 
clock-driven synchronous, which we take 
advantage of  to approximate global synchrony.

• When a firing event is generated by a neuron, 
SpiNNaker immediately transmits the spike 
packet to the destination cores where it waits in a 
ring buffer for a time determined by the 
propagation delay.

• Rather than having all neurons of  a presynaptic 
population fire concurrently, we stagger their 
firing and use delays to ensure all synaptic events 
from the source population induce a membrane 
potential at the correct time-increment. Thus, 
while firings of  source population neurons are 
not synchronous, their effects downstream are.

• Basically, the ring buffers are repurposed to 
reduce packet congestion. 



Time-division Multiplexing (Caveats)20

• In SpiNNaker, delays greater than 10ms are too long for the ring buffers and so require the use of  the  
“DelayExtentionVertex” application, which effectively doubles the required cores/neurons. This also causes 
the spike source array to be split over many cores like a normal population.

• The maximum delay induced by multiplexing is (K*2 - 1), where K is the number of  temporal groups. Thus, 
a maximum of  5 temporal groups can be employed without invoking the above mechanism.

• The maximum number of  temporal groups supported should be 72 based on the following: “While this 
application solves the problem of  simulating extended delays, it cannot do so indefinitely and an effective new 
upper limit of  144 delta-t is enforced due to DTCM constraints.”

• The need to increase the time-scale-factor from 5 to 14 may be due to the following: “An additional row 
must be included to identify spikes traveling directly from the presynaptic core, and also those sent from each 
individual delay stage of  the delay extension. This increased master population table size can be costly to 
search, and detrimental for real-time performance (see section 4.2).”



Future Work21

• Real-time I/O: We’d like to characterize the latency and throughput when using alternatives to the 
SpikeSourceArray and potentially also play with the SpiNN-Link interface. Currently: “Each chip 
additionally has an Ethernet controller, although in practice only one chip is connected to the 
Ethernet connector on each board... Communication with other chips on a board from outside of  
the machine must therefore go via the Ethernet chip; system-level packets are used to effect this 
communication between chips.”

• Looking into new input encoding methods. For example: reduced-precision binary coding of  
inputs. Input layer channels split into binary at desired precision and each connection weight is 
divided logarithmically between the resulting new connections (kudos to Mike Davies for 
suggesting the general concept). This has been tested in Tensorflow but not yet on SpiNNaker. 
Hopefully it’ll be able to handle the increased demand on I/O.

• Laterally connected pseudo-recurrent tiles for image processing.

• Further experiments to better understand communication bottlenecks of  the current version. 
Also, we’ve heard the SpiNNaker 2.0 prototype is clocked at 500MHz [3] which is 2.5 times that of  
the current version.



SpiNNaker (References)22
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Thanks!23

Questions?

Code available at 
https://github.com/SNL-NERL/Whetstone

Severa, et al., Training deep neural networks for binary 
communication with the Whetstone method, Nature Machine 

Intelligence 1, 86-94 (2019) https://rdcu.be/biPE6

https://github.com/SNL-NERL/Whetstone
https://rdcu.be/biPE6


SpiNNaker (Hardware Overview)24

Chip Hardware Specs:

•18 ARM968 cores clocked at 200MHz (5ns/instruction)

•Current chips are implemented in UMC 130 nm silicon. [6]

•“Each chip uses up to 1W when all the processors are fully utilized, ...” [2]

•32kB ITCM (Instruction Tightly Coupled Memory) per core.

•64kB DTCM (Data Tightly Coupled Memory) per core.

•128MB shared SDRAM per chip. (1Gbit)

•5ns/word DTCM access speed (word = 32 bits) (entire read start-to-finish takes just 
1 instruction).

•100ns/word SDRAM access via bridge, subject to contention with other cores.

•10ns/word SDRAM -> DTCM DMA transfer after fixed overhead (>= 15ns), 
independent of  processor.

•200ns packet routing time for on-chip router.

SpiNN-5 48-chip Board:

•“We budget for the nodes dissipating up to 1W, and with other components a board 
will dissipate up to 75W.” [7]
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