
P R E S E N T E D B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Low-Power Deep Learning
Inference using the SpiNNaker
Neuromorphic Platform

Ryan De l l ana

Craig M. Vineyard, Ryan Dellana, James B. Aimone, William M. Severa

Some Problem Scenarios Requiring Efficient/Local Inference2

Application Relevant Constraints

Smartphones power, latency, bandwidth

Autonomous Vehicles latency

Supercomputing thermal

Security Systems on Backup Power power, interference

Imaging Satellites power, bandwidth

Micro-Drones power, latency, bandwidth, interference

Autonomous Hypersonics latency, interference

Nuclear Reactor Emergency Maintenance power, thermal, interference

Advanced Neuroprosthetics power, latency, thermal, privacy

Platforms Offering Efficient Low-Power Inference3

Continuous Spiking

NVIDIA Jetson TX1-2

Intel Movidius

Manchester SpiNNaker

IBM TrueNorth SNL STPU

Intel Loihi

Google TPU

Deep ANNs

Native

?

Some Challenges Porting “Traditional” Deep Nets to Spiking Hardware4

Traditional ANNs Spiking Nets

Continuous Activations Discrete/Binary “Spikes”

Global Clock-Driven Synchrony Local Event-Driven Asynchrony

Dense Matrix/Tensor Representations Sparse Synapse/Neuron Representations

Floating-Point Weight Precision Weights Often Fixed-Point

Individual “Neuron” Biases (Often Shared) Firing Thresholds

Batch Normalization Layers ???

?

• Spiking Hardware is Typically Designed for Neuro-Simulation.

Whetstone Overview

Whetstone provides a drop-in mechanism for tailoring a
DNN to a spiking hardware platform (or other binary
threshold activation platforms)
• Hardware platform agnostic
• Compatible with a wide variety of DNN topologies
• No added time or complexity cost at inference
• Simple neuron requirements: Integrate and fire

From Continuous Activations to Binary6

Traditional ANNs Spiking Nets

Continuous Activations Discrete/Binary “Spikes”

• During training, activations are gradually sharpened one-layer-
at-a-time, starting with the first.

• The rate of sharpening can be determined adaptively based
on changes in the loss.

• Result is a binary-activation quantized version of the original
network, which can be directly run in many kinds of
neuromorphic hardware.

• These networks allow “single-pass inference”, where multiple
“wave-fronts” can pass through the net simultaneously. This
provides advantages in throughput, latency, and possibly
energy usage, relative to rate-coded methods which must
accumulate spikes for some period of time.

7 How Whetstone Works (Animation GIF Format)

Legend for bars:

White: Spiking Accuracy

Green: Non-Spiking Accuracy

Effective Across Various Topologies, Datasets, and Tasks

Semantic Segmentation (Trained on COCO Dataset; Videos from HMDB51 Dataset)

Residual Networks with Skip Connections Autoencoders DQN

SpiNNaker (Case Study)9

•Optimized for biological real-time execution
(“time models itself ”).

•Run spiking networks with biological timing
and topological constraints.

• Well suited to robotics applications.

• Event-driven.

• Locally synchronous, globally asynchronous.

• Multicast packets with fixed routing tables.

• “SpiNNaker comes into its own when a
problem can be cast into a form that requires
many, many tiny asynchronous messages...”
[6].

High-Throughput Binary-MNIST on SpiNNaker10

[input(785) -> dense(100) -> dense(100) -> dense(100)] x 190 Tiles

Between-Sample Delay: 2 miliseconds.
With Instant Decay Neuron ^^^

time_scale_factor: 5.0
Cores per tile: 4

(1 per pop/layer including spike-source-array)
Core Usage: 760/760
Chips Usage: 48
Total Neurons: 57,000
Total Synapses: 97,617*190 = 18,547,230
Total runtime: 7:09 (includes setup, routing, and I/O)
Samples processed: 10,000
Samples per core: 52 -> 53
Inference time: 0.657 seconds.
Throughput: ~15,317 samples/second
Accuracy: ~94%

Convolutional Binary-MNIST on SpiNNaker11

time_scale_factor: 14.0
Temporal Groups: 20
Max-Neurons/Core: 255
Between-Sample Delay: 2ms * tsf = 28ms real-time.
Cores per tile: 371
Cores Used: 371/760 ~49%
Chips Used: 28/48 ~58%
Total Neurons: 47,640
Total Synapses: ~2,596,432
Samples processed: 10,000
Samples per tile: 10,000
Total runtime: 1:22:39 hours:minutes:seconds

(includes setup, routing, and I/O)
Inference time: 51:21 minutes:seconds
Throughput: ~3.25 samples/second
Latency: 1.694 seconds.
Accuracy: 98.10%

[Input(785) -> conv2d((5x5), 32) -> maxpool2d((2x2)) -> conv2d((5x5), 64) -> maxpool2d((2x2)) -> dense(500) -> dense(100)] x 1 Tile

Porting Deep Nets to SpiNNaker using Whetstone (Overview)12

Remove Batch Normalization Layers

ANN with Binary Quantized
Activations and Batch
Normalization Layers

Convert from Tensor to Sparse Representation

Replace Biases with Bias Neurons

(Optional) Use Propagation Delays to Define Temporal
Groups for Time-division Multiplexing

Convert to PyNN Representation and Load to
SpiNNaker using SpyNNaker Library

13 Removing Batch Normalization Layers

Traditional ANNs Spiking Nets

Batch Normalization Layers ???

14 From Tensors to Neurons

Traditional ANNs Spiking Nets

Dense Matrix/Tensor Representations Sparse Synapse/Neuron Representations

Gotcha
The biological interpretation of convolution
requires a number of neurons equal to the size
of the output tensor.

Layers can be converted to
PyNN populations

15 Impact of Reduced Precision Weights

Traditional ANNs Spiking Nets

Floating-Point Weight Precision Weights Often Fixed-Point

16 Translating Biases

Traditional ANNs Spiking Nets

Individual “Neuron” Biases (Often Shared) Firing Thresholds

Gotcha
Though one can interpret biases as firing thresholds,
PyNN and SpiNNaker make this approach impractical
since thresholds are typically shared across all neurons
of a given population.

An alternative is to create a network of explicit bias
neurons. Bias neurons are daisy-chained from layer-to-
layer, with the first layer requiring an additional input
to start it off.

17 Time-division Multiplexing (i.e. Temporal Groups)

Traditional ANNs Spiking Nets

Global Clock-Driven Synchrony Local Event-Driven Asynchrony

Gotcha
Sustained global synchrony is not guaranteed:
"Relative drift between boards is possible due
to slight variations in clock speed (from clock
crystal manufacturing variability), however, this
effect is small relative to simulation times…"

Gotcha
Binary-activation ANNs require global
synchrony to produce correct one-shot output.
However, their real-time simulation produces
synchronous bursts of activity which can
overload the communications fabric, breaking
global synchrony. Time-division multiplexing
using propagation delays is one way to mitigate
this problem, but has performance tradeoffs.

Time-division Multiplexing (Animation)18

Time-division Multiplexing (Why it Works)19

• While SpiNNaker processes synaptic events
asynchronously, neuron state updates are local
clock-driven synchronous, which we take
advantage of to approximate global synchrony.

• When a firing event is generated by a neuron,
SpiNNaker immediately transmits the spike
packet to the destination cores where it waits in a
ring buffer for a time determined by the
propagation delay.

• Rather than having all neurons of a presynaptic
population fire concurrently, we stagger their
firing and use delays to ensure all synaptic events
from the source population induce a membrane
potential at the correct time-increment. Thus,
while firings of source population neurons are
not synchronous, their effects downstream are.

• Basically, the ring buffers are repurposed to
reduce packet congestion.

Time-division Multiplexing (Caveats)20

• In SpiNNaker, delays greater than 10ms are too long for the ring buffers and so require the use of the
“DelayExtentionVertex” application, which effectively doubles the required cores/neurons. This also causes
the spike source array to be split over many cores like a normal population.

• The maximum delay induced by multiplexing is (K*2 - 1), where K is the number of temporal groups. Thus,
a maximum of 5 temporal groups can be employed without invoking the above mechanism.

• The maximum number of temporal groups supported should be 72 based on the following: “While this
application solves the problem of simulating extended delays, it cannot do so indefinitely and an effective new
upper limit of 144 delta-t is enforced due to DTCM constraints.”

• The need to increase the time-scale-factor from 5 to 14 may be due to the following: “An additional row
must be included to identify spikes traveling directly from the presynaptic core, and also those sent from each
individual delay stage of the delay extension. This increased master population table size can be costly to
search, and detrimental for real-time performance (see section 4.2).”

Future Work21

• Real-time I/O: We’d like to characterize the latency and throughput when using alternatives to the
SpikeSourceArray and potentially also play with the SpiNN-Link interface. Currently: “Each chip
additionally has an Ethernet controller, although in practice only one chip is connected to the
Ethernet connector on each board... Communication with other chips on a board from outside of
the machine must therefore go via the Ethernet chip; system-level packets are used to effect this
communication between chips.”

• Looking into new input encoding methods. For example: reduced-precision binary coding of
inputs. Input layer channels split into binary at desired precision and each connection weight is
divided logarithmically between the resulting new connections (kudos to Mike Davies for
suggesting the general concept). This has been tested in Tensorflow but not yet on SpiNNaker.
Hopefully it’ll be able to handle the increased demand on I/O.

• Laterally connected pseudo-recurrent tiles for image processing.

• Further experiments to better understand communication bottlenecks of the current version.
Also, we’ve heard the SpiNNaker 2.0 prototype is clocked at 500MHz [3] which is 2.5 times that of
the current version.

SpiNNaker (References)22

[1] Rhodes, Oliver, et al. "sPyNNaker: A Software Package for Running PyNN Simulations on SpiNNaker." Frontiers in
neuroscience 12 (2018).

[2] Rowley, Andrew GD, et al. "SpiNNTools: the execution engine for the SpiNNaker platform." arXiv preprint
arXiv:1810.06835 (2018).

[3] Liu, Chen, et al. "Memory-efficient Deep Learning on a SpiNNaker 2 prototype." Frontiers in neuroscience 12 (2018).

[4] Temple, Steve. "SARK - SpiNNaker Application Runtime Kernel"
(http://spinnakermanchester.github.io/docs/sarkV200.pdf) (2016)

[5] Serrano-Gotarredona, Teresa, et al. "ConvNets experiments on SpiNNaker." Circuits and Systems (ISCAS), 2015 IEEE
International Symposium on. IEEE, 2015.

[6] Brown, Andrew, et al. "SpiNNaker-programming model." IEEE Transactions on Computers 1 (2015): 1-1.

[7] Furber, Steve B., et al. "Overview of the spinnaker system architecture." IEEE Transactions on Computers 62.12 (2013):
2454-2467.

[8] "SpiNNaker datasheet version 2.02 6 January 2011"
(http://spinnakermanchester.github.io/docs/SpiNN2DataShtV202.pdf) (2011)

Thanks!23

Questions?

Code available at
https://github.com/SNL-NERL/Whetstone

Severa, et al., Training deep neural networks for binary
communication with the Whetstone method, Nature Machine

Intelligence 1, 86-94 (2019) https://rdcu.be/biPE6

https://github.com/SNL-NERL/Whetstone
https://rdcu.be/biPE6

SpiNNaker (Hardware Overview)24

Chip Hardware Specs:

•18 ARM968 cores clocked at 200MHz (5ns/instruction)

•Current chips are implemented in UMC 130 nm silicon. [6]

•“Each chip uses up to 1W when all the processors are fully utilized, ...” [2]

•32kB ITCM (Instruction Tightly Coupled Memory) per core.

•64kB DTCM (Data Tightly Coupled Memory) per core.

•128MB shared SDRAM per chip. (1Gbit)

•5ns/word DTCM access speed (word = 32 bits) (entire read start-to-finish takes just
1 instruction).

•100ns/word SDRAM access via bridge, subject to contention with other cores.

•10ns/word SDRAM -> DTCM DMA transfer after fixed overhead (>= 15ns),
independent of processor.

•200ns packet routing time for on-chip router.

SpiNN-5 48-chip Board:

•“We budget for the nodes dissipating up to 1W, and with other components a board
will dissipate up to 75W.” [7]

	Low-Power Deep Learning Inference using the SpiNNaker Neuromorphic Platform
	Some Problem Scenarios Requiring Efficient/Local Inference
	Platforms Offering Efficient Low-Power Inference
	Some Challenges Porting “Traditional” Deep Nets to Spiking Hardware
	Whetstone Overview
	From Continuous Activations to Binary
	How Whetstone Works (Animation GIF Format)
	Effective Across Various Topologies, Datasets, and Tasks
	SpiNNaker (Case Study)
	High-Throughput Binary-MNIST on SpiNNaker
	Convolutional Binary-MNIST on SpiNNaker
	Porting Deep Nets to SpiNNaker using Whetstone (Overview)
	Removing Batch Normalization Layers
	From Tensors to Neurons
	Impact of Reduced Precision Weights
	Translating Biases
	Time-division Multiplexing (i.e. Temporal Groups)
	Time-division Multiplexing (Animation)
	Time-division Multiplexing (Why it Works)
	Time-division Multiplexing (Caveats)
	Future Work
	SpiNNaker (References)
	Thanks!
	SpiNNaker (Hardware Overview)

