Towards a chip architecture for acceleration of Deep Neural Networks using Analog Memory

Stefano Ambrogio

Pritish Narayanan Hsinyu Tsai Charles Mackin An Chen Robert M. Shelby Geoffrey W. Burr

IBM Research - Almaden

Outline

- Introduction
- Analog memory for training Neural Networks
- Software-equivalent accuracy with novel unit cell
- Circuit design considerations
- Conclusion

Outline

Introduction

- Analog memory for training Neural Networks
- Software-equivalent accuracy with novel unit cell
- Circuit design considerations
- Conclusion

What is AI?

2012: Al foundations

Al hardware, present & near-future: high-level view

Forward Inference (in the cloud & at the edge)

Training (mostly in the cloud)

TODAY

CPUs & GPUs **VERY SOON**

TPU1

Custom digital accelerators

TPU2

LATER ON...?

Analogmemorybased accelerators ?

Outline

- Introduction
- Analog memory for training Neural Networks
- Software-equivalent accuracy with novel unit cell
- Circuit design considerations
- Conclusion

Computation needed: "Multiply-accumulate"

Emerging devices for memory and computing

Information encoded in the device conductance

D. Ielmini, H.-S. P. Wong, Nature Electronics (2018)

NVM (Non-Volatile Memory): usually for storing digital data (0s and 1s)

Like conventional memory (SRAM/DRAM/Flash), an NVM is addressed one row at a time, to retrieve previously-stored digital data.

Multiply-accumulate with NVM: computed at the data, by physics

Vision: NVM-based Deep Learning Chip

- Support multiple deep learning algorithms
- Reconfigurable routing: Map different neural net topologies to the same chip
- Weight override mechanism for distributed learning

Maximizing the future business case (vs. a GPU)

Low Power

(inherent in the physics, but possible to lose in the engineering...)

Of zero interest

Still of interest for powerconstrained situations: learning-in-cars, etc.

Sweet spot: rather than buy GPUs, people buy this chip instead for training of Deep-NN's

Of zero interest

Accuracy

(essential that final Deep-NN performance be indistinguishable from GPUs – hardest technical challenge)

Of zero interest

Still of interest for some situations: learning-in-server-room

Of zero interest

(circuitry must be massively parallel)

Faster

Outline

- Introduction
- Analog memory for training Neural Networks
- Software-equivalent accuracy with novel unit cell
- Circuit design considerations
- Conclusion

Our journey towards high DNN accuracy

Where we were in 2014

Experiments on MNIST Dataset

• 82% accuracy w/ 5,000 examples,

• Too slow for 60,000 examples

"What a GPU would get" with this network...

97-98% TEST accuracy w/ 60,000 examples 94% TEST accuracy w/ 5,000 examples

Non-idealities in Real PCM Devices

G. W. Burr, R. M. Shelby, et al., IEDM Technical Digest, 29.5, (2014).

Study: 2-PCM: Asymmetric Conductance Response

- 2-PCM unit cell is non-linear and asymmetric
- Symmetry is crucial to balance UP and DOWN steps and accurately implement open-loop weight update
- Strong impact on Neural Network training accuracy

2-PCM scheme: dependence on applied pulses

- ΣΔW distributions are overlapped, preventing a clear distinction of increase and decrease weight requests
- MNIST accuracy is lower than accuracy achieved with TensorFlow on a same size network

MNIST Accuracy
TensorFlow: 97.94%
2-PCM: 93.77%

Novel 2T2R + 3T1C unit cell

Most Significant Pair Least Significant Pair (MSP) (LSP)

$$W = F \times (G^+ - G^-) + g^+ - g^-$$

 Symmetry → Weight update performed on g+ only -g⁻ shared among many columns (e.g. 128 columns) S. Ambrogio et al, *Nature*, 558, 60 (2018)

- Dynamic Range → Gain factor F (e.g. F = 3)
- Non-Volatility → Weight transferred to PCMs infrequently (every 1000s of images)

Novel unit cell: 2T2R + 3T1C, nominal behavior

2T2R+3T1C scheme: dependence on applied pulses

- Higher number of requested pulses due to very small g+ update
- MNIST accuracy is equivalent to accuracy achieved with TensorFlow on a same size network

MNIST Accuracy TensorFlow: 97.94% 2T2R+3T1C: 98.10%

Novel unit cell: 2T2R + 3T1C, CMOS variability

- PMOS charges the capacitor, increasing g+ and W
- NMOS discharges the capacitor, decreasing g+ and W
- Read MOS shows a linear dependence of g on V_C
- PMOS and NMOS never provide the same current, causing UP and DOWN weight updates asymmetry

2T2R+3T1C scheme: impact of CMOS variability

 MNIST accuracy is highly degraded with respect to accuracy achieved with TensorFlow

MNIST Accuracy
TensorFlow: 97.94%
2T2R+3T1C: 98.10%
+Variability: 92.42%

2T2R+3T1C scheme: polarity inversion

Polarity inversion: Invert the sign of the lower significance conductance S. Ambrogio et al, between transfers to higher significance pair Nature, 558, 60 (2018)

2T2R+3T1C scheme: CMOS variability, polarity inversion

- Asymmetry in PMOS and NMOS is averaged by polarity inversion
- MNIST accuracy is equivalent to accuracy achieved with TensorFlow

MNIST Accuracy Tensorflow: 97.94% Polarity Inv: 97.95%

Accuracy on MNIST and MNIST backrand

S. Ambrogio et al, *Nature*, 558, 60 (2018)

Mixed hardware-software experiment: every synaptic weight → 2 real PCM devices

Transfer learning from ImageNet to CIFAR-10/100

Mixed hardware-software experiment

Transfer Learning: Use pre-trained, scaled weights from ImageNET for convolution layers

Convolutional and Subsampling layers

Full 2-Analog Memory structure

$$W = F \times (G^+ - G^-) + g^+ - g^-$$

Single pair of devices performing the entire training

Single device requirements

- Several specifications are requested to single resistive device in order to obtain softwareequivalent accuracies
- A minimum of 1000 different conductance steps are required → extremely hard to obtain
- A maximum 5% of asymmetry between up and down conductance updates
 - → need for very linear and symmetric devices

Our solution → Multiple conductances of varying significance, diversification of requirements

TABLE 2 | Summary of RPU device specifications.

Specs	Parameter	Value	Tolerance
Pulse duration		1 <i>n</i> s	
Operating voltage	±V _S	1 <i>V</i>	
Maximum device area		$0.04 \ \mu m^2$	
Average device resistance	R _{device}	$24 M\Omega$	$7 M\Omega$
Maximum device resistance	$\max\left(g_{ij} ight)$	112 <i>M</i> Ω	$7 M\Omega$
Minimum device resistance	$\min\left(g_{ij} ight)$	$14 M\Omega$	$7 M\Omega$
Resistance on/off ratio	$\max\left(g_{ij}\right)/\min\left(g_{ij}\right)$	8	
Resistance change at $\pm V_S$	Δg_{min}^{\pm}	100 ΚΩ	30 <i>K</i> Ω
Resistance change at $\pm V_S/2$		10 <i>K</i> Ω	
Storage capacity	$\left(\max\left(g_{ij}\right) - \min\left(g_{ij}\right)\right)/\Delta g_{min}$	1000 levels	3
Device up/down asymmetry*	$\Delta g_{min}^+/\Delta g_{min}^-$	1.05	2%

Note that these numbers are derived from the radar diagram in **Figure 4A** and correspond to the shaded area. *Global asymmetry in up/down responses can be to a large extend compensated by proper adjustment of pulse widths and/or pulse amplitude.

T. Gokmen, Y. Vlasov, Frontiers in neuroscience 10, 333 (2016)

- Most Significant Pair: Infrequent, Closed Loop Programming Operation
- Least Significant Pair: Frequent, Open Loop Programming Operation

Suggestions for new analog memory devices

- Larger unit cell with two components
- 1. More-significant pair of non-volatile conductances (e.g., PCM) stores "most" of the weight info
 - Non-linear conductance update → OK
 - DOES need to be able to tune these conductances rapidly in a CLOSED-LOOP manner
- 2. We perform all the OPEN-LOOP programming using a "less-significant" pair of conductances
 - Poor retention → OK
 - Significant device-to-device fixed variabilities → OK
 - DOES need to offer highly linear conductance update
- → Reduces the difficulty of device requirements

S. Ambrogio et al, *Nature*, 558, 60 (2018)

G. Cristiano et al, J. Appl. Phys. 124 (15), 151901 (2018)

Comparison of device specifications for MSP and LSP

Specifications	Parameter	MSP	LSP
Initial Step-size	$\Delta G_0 \left(\Delta G_0^* \right)$	< 21 µS (42%)	< 1.4 µS (2.8%)
Intra-device Variability	σ_{intra}	< 1.5 μS	< 0.8 μS
Inter-device Variability	$\sigma_{\sf Gmax}$	< 10 μS	< 12 μS
	$\sigma_{\Delta G0}^{\star}$	< 200%	< 95%
Faulty devices	Dead C.R.	< 7%	< 7%
	Stuck On C.R.	< 35%	< 10%
Dynamic range	Number of levels	> 13	> 110
Retention	Time before data loss	Higher	Lower
Endurance	Number of Set/Reset	Lower	Higher

Perspective on Training Fully Connected Networks with Resistive Memories: Device Requirements for Multiple Conductances of Varying Significance

Giorgio Cristiano, ^{1,2} Massimo Giordano, ^{1,2} Stefano Ambrogio, ¹ Louis P. Romero, ¹ Christina Cheng, ¹ Pritish Narayanan, ¹ Hsinyu Tsai, ¹ Robert M. Shelby, ¹ and Geoffrey W. Burr^{1, a})

¹⁾ IBM Research AI, IBM Research—Almaden, 650 Harry Road, San Jose, CA USA 95120

G. Cristiano et al, J. Appl. Phys. 124 (15), 151901 (2018)

²⁾EPFL, Route Cantonale, 1015 Lausanne, Switzerland

Outline

- Introduction
- Analog memory for training Neural Networks
- Software-equivalent accuracy with novel unit cell
- Circuit design considerations
- Conclusion

Long-term: maximizing the future business case (vs. a GPU)

Low Power

(inherent in the physics, but possible to lose in the engineering...) Still of interest for powerconstrained situations: learning-in-cars, etc.

Accuracy

(essential that final Deep-NN performance be indistinguishable from GPUs –hardest technical challenge)

Sweet spot: rather than buy GPUs, people buy this chip instead for training of Deep-NN's

Still of interest for some situations: learning-in-server-room

(circuitry must be massively parallel)

Faster

Suggestions from circuit design work

- 1) Parallelism is key
- 2) Avoiding ADC (Analog-to-Digital Conversion) saves time, power and area
- 3) Do the necessary computations (squashing functions) but be as "approximate" as you can (get away with)
- 4) Need to get vectors of data from the bottom of one array to the edge of the next one
- 5) Digital accelerators are at their best w/ convolutional layers; Analog-memory accelerators are at their best w/ fully-connected layers.

Impact on Convolutional Neural Networks

- Only the last layers in a Convolutional Neural Network are Fully Connected due to memory constraints
- Hardware accelerators could easily implement FC layers, what could be the impact on CNN topology and performance?

Outline

- Introduction
- Analog memory for training Neural Networks
- Software-equivalent accuracy with novel unit cell
- Circuit design considerations
- Conclusion

Conclusion

- Al is introducing novel tools to develop solutions to everyday challenges
 - Brain Inspired approach
 - Deep Learning approach
- NVM-based crossbar arrays can accelerate the training of Deep Machine Learning compared to GPU-based training
 - Multiply-accumulate performed at the data
 - Possible 500x speedup and orders-of-magnitude lower power
- Experimental results on a 2T2R+3T1C unit cell demonstrate software-equivalent training accuracy
 - MNIST, MNIST-backrand, CIFAR-10 and CIFAR-100 tested
- Need area-efficient peripheral circuitry
 - Tradeoffs balancing simplicity and area-efficiency against impact on ANN performance stefano.ambrogio@ibm.com

Photos of us with "our first wafer of PCM-based circuit designs"

Kohji **Hosokawa**

Not shown: Scott C. Lewis (YKT)

Thank you!

stefano.ambrogio@ibm.com

What do we mean by "mixed-hardware-software experiment"?

Full software simulation

Mixed-hardwaresoftware experiment

Full hardware experiment

NVM devices

Make a few NVM & measure, then capture in a statistical model > not very accurate!

On-chip memory array

(the real yield, variability, non-ergodic statistics, etc.)

On-chip memory array

CMOS
Periphery,
Neurons,
etc.

Modeled in software (SPICE)

→ accurate!

Modeled in software (SPICE)

→ accurate!

Real CMOS implementation

Impact of different techniques

- Polarity inversion shows the largest impact on accuracy
- Other techniques show varying importance depending on the training dataset (MNIST, MNIST backrand, CIFAR-10/100)