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What is AI?

Artificial Intelligence

Machine Learning

Neural Networks

Deep Learning

Brain Inspired Algorithms
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ImageNet Classification Error

Deep Neural Networks
GPU Hardware Accelerators 

Algorithms

Data Compute

YouTube
400 hours of video 
uploaded every minute

Walmart
2.5 petabytes of 
customer data hourly

Facebook
350 million images 
uploaded daily

The Deep Learning Explosion

2012: AI foundations
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AI hardware, present & near-future: high-level view

Forward
Inference
(in the cloud 

& at the edge)

Training
(mostly in
the cloud)

TODAY

CPUs
& GPUs

VERY SOON

Custom
digital

accelerators

TPU1

TPU2

LATER ON…?

Analog-
memory-

based
accelerators

?
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With a GPU, 
matrix-multiplication 
is fast and parallel

x

x1

x2

x528

B

wij

Σ xi wij

yj =f(Σ xi wij)

Computation needed: “Multiply-accumulate”

but x and w values must arrive from DRAM
and new y values sent back to DRAM
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Emerging devices for memory and computing

 Information encoded in the device conductance

Resistive Memory 
(RRAM)

Phase-Change 
Memory (PCM)

Magnetic Memory 
(MRAM)

Ferro-Electric 
Memory (FeRAM)

D. Ielmini, H.-S. P. Wong, Nature Electronics (2018)
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resistors
Analog

Selector device
NVM

Like conventional memory 
(SRAM/DRAM/Flash), 
an NVM is addressed 

one row at a time,
to retrieve previously-stored

digital data.

NVM (Non-Volatile Memory): usually for storing digital data (0s and 1s)

Address
decoder

Sense-Amplifiers
(analog current  0s and 1s)

Vread

NVM technologies include:
MRAM (Magnetic RAM)

PCM (Phase-Change Memory)
RRAM (Resistance RAM)

0 1 0 1 0 1
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x1

x2

x52
8

B

wij

Σ xi wij

yj =f(Σ xi wij)B

Multiply-accumulate with NVM:

pairs
Conductance

Selector device
NVM

N1

N2

Nn

M2
+ -M1

+ - M3
+ -

computed at the data, by physics

1) Different peripheral circuitry
2) Weights w conductances G+, G-

(Ohm’s Law: V= IR  I = GV)
3) Apply “x” voltages to every row

(Kirchhoff’s Current Law  Σ I)
4) Analog measurement

I= Σ G- V
I= Σ G+ V

I=G+ V(t)

I=G- V(t)

xi

wij
=G+- G-
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Vision: NVM-based Deep Learning Chip

 Support multiple 
deep learning 
algorithms 

 Reconfigurable 
routing: Map different 
neural net topologies 
to the same chip 

 Weight override 
mechanism for 
distributed learning
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Maximizing the future business case (vs. a GPU)
Low Power
(inherent in the physics,
but possible to lose in the
engineering…)

Accuracy
(essential that final Deep-NN 

performance be 
indistinguishable from GPUs –

hardest technical challenge)

Faster

(circuitry must be 
massively parallel)

Sweet spot: rather than 
buy GPUs, people buy 

this chip instead for 
training of Deep-NN’s

Still of interest for power-
constrained situations: 
learning-in-cars, etc.

Still of interest for some 
situations: learning-in-

server-roomOf zero 
interest

Of zero 
interest

Of zero 
interest

Of zero interest
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Our journey towards high DNN accuracy

G. W. Burr, R. M. Shelby, et al., IEDM Technical Digest, 29.5, (2014).

Where we were in 2014
• Experiments on MNIST Dataset
• 82% accuracy w/ 5,000 examples, 
• Too slow for 60,000 examples

“What a GPU would get” with this network…
97-98% TEST accuracy w/ 60,000 examples
94% TEST accuracy w/ 5,000 examples

} Non-idealities in Real PCM Devices  

G+ G-

W = G+ - G-
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Study: 2-PCM: Asymmetric Conductance Response

 2-PCM unit cell is non-linear and asymmetric
 Symmetry is crucial to balance UP and DOWN steps and 

accurately implement open-loop weight update
 Strong impact on Neural Network training accuracy

G+ G-

W = G+ - G-

Median

Non-linear behavior

Asymmetric 
update
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2-PCM scheme: dependence on applied pulses

Σ∆W

+10 net pulses

-10 net pulses
+10 net 
pulses

-10 net 
pulses

MNIST Accuracy
TensorFlow: 97.94%

2-PCM: 93.77%

 Σ∆W distributions are overlapped, preventing a clear 
distinction of increase and decrease weight requests
 MNIST accuracy is lower than accuracy achieved with 

TensorFlow on a same size network
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Novel 2T2R + 3T1C unit cell

W = F x (G+ - G-) + g+ - g-

g+ g-G+ G-

 Symmetry Weight update performed on g+ only
– g- shared among many columns (e.g. 128 columns)

 Dynamic Range Gain factor F (e.g. F = 3)
 Non-Volatility Weight transferred to PCMs infrequently (every 1000s of images)

S. Ambrogio et al, 
Nature, 558, 60 (2018)

Most Significant Pair 
(MSP)

Least Significant Pair 
(LSP)

18 April 2019Stefano Ambrogio, IBM Research - Almaden 18



7th NICE Workshop Series

Novel unit cell: 2T2R + 3T1C, nominal behavior

Nominal
Nominal

Nominal

g+

VC

 PMOS charges the capacitor, increasing g+ and W
 NMOS discharges the capacitor, decreasing g+ and W
 Read MOS shows a linear dependence of g on VC

 PMOS and NMOS provide the same current, balancing 
UP and DOWN weight updates
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2T2R+3T1C scheme: dependence on applied pulses

+100 net 
pulses

-100 net 
pulses +100 net 

pulses
-100 net 
pulses

MNIST Accuracy
TensorFlow: 97.94%

2T2R+3T1C: 98.10%

 Higher number of requested pulses due to very small 
g+ update
 MNIST accuracy is equivalent to accuracy achieved 

with TensorFlow on a same size network

Transfer Transfer
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Novel unit cell: 2T2R + 3T1C, CMOS variability

Nominal

Nominal

Nominal

g+

VC

 PMOS charges the capacitor, increasing g+ and W
 NMOS discharges the capacitor, decreasing g+ and W
 Read MOS shows a linear dependence of g on VC

 PMOS and NMOS never provide the same current, 
causing UP and DOWN weight updates asymmetry

Variability

Variability

Variability
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2T2R+3T1C scheme: impact of CMOS variability

+100 net 
pulses

-100 net 
pulses +100 net 

pulses
-100 net 
pulses

MNIST Accuracy
TensorFlow: 97.94%

2T2R+3T1C: 98.10%
+Variability: 92.42%

 Asymmetry in PMOS and NMOS strongly broadens 
Σ∆W distributions
 MNIST accuracy is highly degraded with respect to 

accuracy achieved with TensorFlow 

Transfer Transfer

Cross-section
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2T2R+3T1C scheme: polarity inversion

+100 net 
pulses Transfer

Cross-section

W = F x (G+ - G-) + g+ - g-

Stronger 
PFET

Stronger 
NFET

Equal PFET 
and NFET

g+

Polarity inversion: Invert the sign of the lower significance conductance 
between transfers to higher significance pair

Read current
SUBTRACTS 
from weight

Read current
ADDs to weightIncrease weight

Decrease weight

DECREASE weight

INCREASE weight

W = F x (G+ - G-) - (g+ - g-)Transfer

S. Ambrogio et al, 
Nature, 558, 60 (2018)
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2T2R+3T1C scheme: CMOS variability, polarity inversion

+100 net 
pulses

-100 net 
pulses +100 net 

pulses
-100 net 
pulses

 Asymmetry in PMOS and NMOS is averaged by 
polarity inversion
 MNIST accuracy is equivalent to accuracy achieved 

with TensorFlow 

Transfer Transfer

Cross-section

MNIST Accuracy
Tensorflow: 97.94%
Polarity Inv: 97.95%
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Test

Training
TensorFlow

Test

Training

TensorFlow

MNIST-Backrand
330,370 PCMs

MNIST
329,770 PCMs

Accuracy on MNIST and MNIST backrand

Mixed hardware-software experiment: every synaptic weight  2 real PCM devices
S. Ambrogio et al, Nature, 558, 60 (2018)
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Transfer learning from ImageNet to CIFAR-10/100

Test

Training

Tensorflow

Test

Training

Tensorflow

CIFAR-10
40,980 PCMs

CIFAR-100
409,800 PCMs

Only train last fully-
connected layer

ImageNET CIFAR-10/100

Convolutional and Subsampling layers

Fully Connected layer
Transfer Learning: Use pre-trained, scaled 
weights from ImageNET for convolution layers

Mixed hardware-software experiment
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Full 2-Analog Memory structure
W = F x (G+ - G-) + g+ - g-

G+ G–G+ G–
g+ g-

 Single pair of devices performing the entire training
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Single device requirements
 Several specifications are requested to single 

resistive device in order to obtain software-
equivalent accuracies

 A minimum of 1000 different conductance 
steps are required  extremely hard to obtain

 A maximum 5% of asymmetry between up and 
down conductance updates 
 need for very linear and symmetric devices

Our solution  Multiple conductances of 
varying significance, diversification of 
requirements

T. Gokmen, Y. Vlasov, Frontiers in neuroscience 10, 333 (2016)
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Full 4-Analog Memory structure
W = F x (G+ - G-) + g+ - g-

G+ G– g+ g-

Weight update
Infrequent 

transfer from g+ 
and g-

Most Significant Pair
(MSP)

Least Significant Pair
(LSP)

G+ G–
g+ g-

 Most Significant Pair: Infrequent, Closed Loop Programming Operation
 Least Significant Pair: Frequent, Open Loop Programming Operation
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Suggestions for new analog memory devices

 Larger unit cell with two components
1. More-significant pair of non-volatile conductances (e.g., PCM) stores “most” of the weight info

• Non-linear conductance update  OK
• DOES need to be able to tune these conductances rapidly in a CLOSED-LOOP manner

2. We perform all the OPEN-LOOP programming using a “less-significant” pair of conductances

• Poor retention  OK
• Significant device-to-device fixed variabilities  OK
• DOES need to offer highly linear conductance update

 Reduces the difficulty of device requirements
S. Ambrogio et al, Nature, 558, 60 (2018)

G. Cristiano et al, J. Appl. Phys. 124 (15), 151901 (2018)
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G. Cristiano et al, J. Appl. Phys. 124 (15), 151901 (2018)

Comparison of device specifications for MSP and LSP
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Long-term: maximizing the future business case (vs. a GPU)
Low Power
(inherent in the physics,
but possible to lose in the
engineering…)

Accuracy
(essential that final Deep-NN 

performance be indistinguishable 
from GPUs –hardest technical 

challenge)

Faster

(circuitry must be 
massively parallel)

Sweet spot: rather than 
buy GPUs, people buy 

this chip instead for 
training of Deep-NN’s

Still of interest for power-
constrained situations: 
learning-in-cars, etc.

Still of interest for some 
situations: learning-in-

server-room
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Suggestions from circuit design work

1) Parallelism is key

2) Avoiding ADC (Analog-to-Digital Conversion) saves 
time, power and area

3) Do the necessary computations (squashing functions) 
but be as “approximate” as you can (get away with)

4) Need to get vectors of data from the bottom of one array 
to the edge of the next one

5) Digital accelerators are at their best w/ convolutional
layers; Analog-memory accelerators are at their best w/ 
fully-connected layers.
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Impact on Convolutional Neural Networks

 Only the last layers in a Convolutional Neural Network are Fully Connected due to 
memory constraints
 Hardware accelerators could easily implement FC layers, what could be the impact 

on CNN topology and performance?

https://devblogs.nvidia.com/parallelforall/
deep-learning-nutshell-core-concepts/
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Conclusion
 AI is introducing novel tools to develop solutions to everyday challenges
Brain Inspired approach
Deep Learning approach

 NVM-based crossbar arrays can accelerate the training of Deep Machine Learning 
compared to GPU-based training

– Multiply-accumulate performed at the data
– Possible 500x speedup and orders-of-magnitude lower power

 Experimental results on a 2T2R+3T1C unit cell demonstrate software-equivalent 
training accuracy

– MNIST, MNIST-backrand, CIFAR-10 and CIFAR-100 tested

 Need area-efficient peripheral circuitry
– Tradeoffs balancing simplicity and area-efficiency against impact on ANN performance

stefano.ambrogio@ibm.com
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Photos of us with “our first wafer of PCM-based circuit designs” 

Sidney
Tsai

Geoffrey
Burr

Bob
Shelby

Pritish
Narayanan

Stefano
Ambrogio

Kohji
Hosokawa

G. Burr P. Narayanan

Not shown: Scott C. Lewis (YKT)
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Thank you!

stefano.ambrogio@ibm.com
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What do we mean by “mixed-hardware-software experiment”?
Full software 

simulation
Full hardware

experiment

NVM
devices

CMOS
Periphery,
Neurons,

etc.

On-chip
memory

array

Real CMOS
implementation

Modeled in 
software
(SPICE)

 accurate!

Make a few NVM & 
measure, then 

capture in a 
statistical model 
not very accurate!

Mixed-hardware-
software experiment

Modeled in 
software
(SPICE)

 accurate!

On-chip
memory array

(the real yield, variability, 
non-ergodic statistics, etc.)
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Impact of different techniques

 Polarity inversion shows the largest impact on accuracy
Other techniques show varying importance depending on the 

training dataset (MNIST, MNIST backrand, CIFAR-10/100)

97.95 97.68 95.76 97.93 97.84 97.9897.86

MNIST Experiment 97.95

2-PCM + 3T1C with CMOS Variability

93.77 98.10 92.42 97.95
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