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What is Al?

Artificial Intelligence
Machine Learning

Neural Networks

Brain Inspired Algorithms
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2012: Al foundations

The Deep Learning Explosion

ImageNet Classification Error
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Al hardware, present & near-future: high-level view

Forward

Inference
(in the cloud
& at the edge)

Training
(mostly in
the cloud)
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TODAY VERY SOON

CPUS Custom

digital
& GPUs accelerators

Stefano Ambrogio, IBM Research - Almaden

LATER ON...?

Analog-
memory-
based

accelerators
)
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Outline

= |Introduction
= Analog memory for training Neural Networks
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Computation needed: “Multiply-accumulate”

With a GPU,
matrix-multiplication
Is fast and parallel

but X and w values must arrive from DRAM
and new Yy values sent back to DRAM

Yj =T(Z x Wij)
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Emerging devices for memory and computing
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NVM (Non-Volatile Memory): usually for storing digital data (Os and 1s)

NVM technologies include: - NVM
MRAM (Magnetic RAM)
PCM (Phase-Change Memory)

RRAM (Resistance RAM)

Address Vread T
decoder > A

%,
%

%

P 3
Y
%
%,

Like conventional memory
(SRAM/DRAM/Flash),
an NVM is addressed

one row at a time,
to retrieve previously-stored
digital data.

£ 9

. P

b A

bA

Sense-Amplifiers -
: A A

(analog current - 0Os and 1s)
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Multiply-accumulate with NVM:  computed at the data, by physics

1) Different peripheral circuitry
2) Weights w = conductances G* G

3) Apply “x” voltages to every row
x, @5

Conductance . NVM

1I=GT V@
o
le\ ‘ooo‘ '
=GT-G" S5V

I=2X G"V
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Vision: NVM-based Deep Learning Chip
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Maximizing the future business case (vs. a GPU)

Low Power Still of interest for power-
(inherent in the physics, constrained situations:
but possible to lose in the |earning_in_car8, etc.

engineering...)

Sweet spot: rather than
buy GPUs, people buy

Of zero this chip instead for
Interest training of Deep-NN’s
Of zero
interest
7t NICE Workshop Series Stefano Ambrogio, IBM Research - AlImaden

a Accuracy

(essential that final Deep-NN
performance be
indistinguishable from GPUs —
hardest technical challenge)

\ Of zero interest Y

Still of interest for some
situations: learning-in-
server-room

Of zero (circ_uitry must be
interest massively parallel)
Faster
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Outline

= |[ntroduction
= Analog memory for training Neural Networks
» Software-equivalent accuracy with novel unit cell
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Our journey towards high DNN accuracy

Where we were in 2014 -
« Experiments on MNIST Dataset What a GPU would get” with this network...

-080
« 82% accuracy w/ 5,000 examples, 97-98% TEST accuracy w/ 60,000 examples
« Too slow for 60,000 examples / 94% TEST accuracy w/ 5,000 examples

[y
o
o

500 x 661 PCM = (2 PCM/synapse * 164,885 synapses) + 730 unused PCM

Yol
o

Experiment } Non-idealities in Real PCM Devices

0
o

~
o

Matched simulation
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Experimental accuracy [«

2 final i
1 PCdIVl t 0 ' — 10 15 h
conductances raining epoc — + -
0 1 | W=G"-G

G. W. Burr, R. M. Shelby, et al., IEDM Technical Digest, 29.5, (2014).
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Study: 2-PCM: Asymmetric Conductance Response

-
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= 2-PCM unit cell is non-linear and asymmetric

= Symmetry is crucial to balance UP and DOWN steps and
accurately implement open-loop weight update

= Strong impact on Neural Network training accuracy
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2-PCM scheme: dependence on applied pulses
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= AW distributions are overlapped, preventing a clear
distinction of increase and decrease weight requests

= MNIST accuracy is lower than accuracy achieved with
TensorFlow on a same size network
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Novel 2T2R + 3T1C unit cell

(MSP)

Most Significant Pair Least Significant Pair

(LSP)

W=Fx(G'-G)+g -g
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. L] il

o LT 4L T Y
» Symmetry - Weight update performed on g+ only S. Ambrogio et al,

—g shared among many colum
= Dynamic Range - Gain factor F

ns (e.g. 128 columns)
(e.g. F=23)

Nature, 558, 60 (2018)

= Non-Volatility - Weight transferred to PCMs infrequently (every 1000s of images)

7t NICE Workshop Series

Stefano Ambrogio, IBM Research - Almaden

18 April 2019 18



Novel unit cell:

AV, [mV]
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2T2R + 3T1C, nominal behavioto
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» PMOS charges the capacitor, increasing g+ and W
= NMOS discharges the capacitor, decreasing g+ and W
= Read MOS shows a linear dependence of g on V.

» PMOS and NMQOS provide the same current, balancing
UP and DOWN weight updates

Stefano Ambrogio, IBM Research - Almaden
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2T2R+3T1C scheme: dependence on applied pulses
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= MNIST accuracy is equivalent to accuracy achieved

with TensorFlow on a same size network
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Novel unlt cell: 2T2R + 3T1C, CMOS varlablllty
—— Variability
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» PMOS charges the capacitor, increasing g+ and W
i = NMOS discharges the capacitor, decreasing g+ and W
i} = Read MOS shows a linear dependence of g on V.

» PMOS and NMOS never provide the same current,
causing UP and DOWN weight updates asymmetry
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2T2R+3T1C scheme: impact of CMOS variability
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= Asymmetry in PMOS and NMOS strongly broadens
>AW distributions

» MNIST accuracy is highly degraded with respect to
accuracy achieved with TensorFlow
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2T2R+3T1C scheme: polarity inversion
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Polarity inversion: Invert the sign of the lower significance conductance s. ambrogio et al,
between transfers to higher significance pair Nature, 558, 60 (2018)
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2T2R+3T1C scheme: CMQOS variabllity, polarity inversion
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= Asymmetry in PMOS and NMQOS is averaged by
polarity inversion

= MNIST accuracy is equivalent to accuracy achieved
with TensorFlow
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Accuracy on MNIST and MNIST backrand

100 T T |
86 - -
I Training ] 5[ Training -
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. 329 770 PCI\/IS ;:- 330,370 PCMs
0

Epoch

S. Ambroglo et al, Nature 558, 60 (2018)

Mixed hardware-software experiment: every synaptic weight - 2 real PCM devices
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Transfer learning from ImageNet to CIFAR-10/100

Mixed hardware-software experiment
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Transfer Learning: Use pre-trained, scaled

weights from ImageNET for convolution layers

7t NICE Workshop Series

Stefano Ambrogio, IBM Research - Almaden

Convolutional and Subsampling layers

X

15 20

Only train last fully-
connected layer

Fully Connected layer
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Full 2-Analog Memory structure
W=Fx (G -G)+g' -0

O ®

L | | o,/

Lo dy) o [0F
s =

® ®
000090 000090

» Single pair of devices performing the entire training
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Single device requirements

= Several specifications are requested to single ~ ™®°-F2!Summan of RPU device specifications.

resistive device in order to obtain software- Specs Parameter Value  Tolerance
equivalent accuracies Pulse duration s
Operating voltage +Vg 1V
Maximum device area 0.04 pm?
= A minimum of 1000 different conductance uorage deviee Floevie el e
steps are required - extremely hard to obtain  madmum device max (g ) H2me 7Me
resistance
Minimum device min (g) 14 MQ 7 MR
. resistance
= A maximum 5% of asymmetry between up and  resstance owoffratio  max (g, ) /min (g 8
down Conductan ce updates Resistance change at x_\.grj;m 100 KQ 30K
+Vg
- need for very linear and symmetric devices Fesiseros chenge st 10K
S
Storage capacity (max (g,]-) — min (gﬁ-)) [AGmin 1000 levels
; . Device up/down Agh. Ing 1.05 2%
Our solution - Multiple conductances of  |esymmety:
Vary' N g S | g N |f| cance . d |Ve s |f| Catl on Of Note that these numbers are derived from the radar diagram in Figure 4A and correspond
i to the shaded area. Global asymmetry in up/down responses can be to a large extend
re q u | re m e n t S compensated by proper adjustment of pulse widths and/or pulse amplitude.

T. Gokmen, Y. Vlasov, Frontiers in neuroscience 10, 333 (2016)
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Full 4-Analog Memory structure

W=FX(

-G)+g9" -0

«C_ | HI;'_W
O o

e

* S0

=

= Most Significant Pair: Infrequent, Closed Loop Programming Operation
= | east Significant Pair: Frequent, Open Loop Programming Operation

7t NICE Workshop Series

Infrequent
transfer from g+  Weight update
and g-
«C. HE'LW. <-IE'LW 4{'%
G~ gl g
Most Significant Pair Least Significant Pair
(MSP) (LSP)
'\ l/”'

Stefano Ambrogio, IBM Research - Almaden
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Suggestions for new analog memory devices

= Larger unit cell with two components
1. More-significant pair of non-volatile conductances (e.g., PCM) stores “most” of the weight info

* Non-linear conductance update -> OK
 DOES need to be able to tune these conductances rapidly in a CLOSED-LOOP manner

2. We perform all the OPEN-LOOP programming using a “less-significant” pair of conductances

* Poor retention > OK
 Significant device-to-device fixed variabilities > OK
 DOES need to offer highly linear conductance update

- Reduces the difficulty of device requirements

S. Ambrogio et al, Nature, 558, 60 (2018)
G. Cristiano et al, J. Appl. Phys. 124 (15), 151901 (2018)
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Comparison of device specifications for MSP and LSP

Initial Step-size

Intra-device Variability

Inter-device Variability

Faulty devices

Dynamic range
Retention

Endurance

7t NICE Workshop Series

AGq (AGp)

Ointra
OGmax
GAGo
Dead C.R.
Stuck On C.R.
Number of levels
Time before data loss

Number of Set/Reset

< 21 uS (42%)

<1.5uS

<10 uS

< 200%
<7%
< 35%
>13
Higher
Lower

< 1.4 uS (2.8%)
<0.8uS
<12uS

< 95%
<7%
<10%
> 110

Lower
Higher

Perspective on Training Fully Connected Networks with Resistive Memories:

Device Requirements for Multiple Conductances of Varying Significance

Giorgio Cristiano,? Massimo Giordano,*? Stefano Ambrogio,} Louis P. Romero,! Christina Cheng,! Pritish
Marayanan,! Hsinyu Tsai,! Robert M. Shelby,? and Geoffrey W. Burr!-#)
WIBM Research Al, IBM Research-Almaden, 650 Harry Road, San Jose, CA USA 95120

#'EPFL, Route Cantonale, 1015 Lausanne, Switzerland

G. Cristiano et al, J. Appl. Phys. 124 (15), 151901 (2018)
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Outline

= |[ntroduction

= Analog memory for training Neural Networks

» Software-equivalent accuracy with novel unit cell
= Circuit design considerations
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Long-term: maximizing the future business case (vs. a GPU)

Low Power

(inherent in the physics,
but possible to lose in the
engineering...)

7t NICE Workshop Series

Still of interest for power-
constrained situations:
learning-in-cars, etc.

Sweet spot: rather than
buy GPUs, people buy
this chip instead for
training of Deep-NN'’s

Stefano Ambrogio, IBM Research - Almaden

r

\.

Accuracy

(essential that final Deep-NN
performance be indistinguishable
from GPUs —hardest technical
challenge)

J

Still of interest for some
situations: learning-in-
server-room

( )
(circuitry must be
massively parallel)
Faster
. J
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Suggestions from circuit design work

1) Parallelism is key

2) Avoiding ADC (Analog-to-Digital Conversion) saves
time, power and area

3) Do the necessary computations (squashing functions)
but be as “approximate” as you can (get away with)

QQ- OO
IT¥---TY

4) Need to get vectors of data from the bottom of one array .
to the edge of the next one -
|

]

5) Digital accelerators are at their best w/ convolutional

layers; Analog-memory accelerators are at their best w/
fully-connected layers.

T

L L LTI i

7t NICE Workshop Series Stefano Ambrogio, IBM Research - AlImaden 18 April 2019



Impact on Convolutional Neural Networks

C %
"'g‘ imput feature maps  feature maps
2x 32 18 x 28 14 x 14

feature extraction classification

= Only the last layers in a Convolutional Neural Network are Fully Connected due to
memory constraints

» Hardware accelerators could easily implement FC layers, what could be the impact
on CNN topology and performance?

7t NICE Workshop Series Stefano Ambrogio, IBM Research - Almaden 18 April 2019

n"". https://devblogs.nvidia.com/parallelforall/

35



Outline

= |[ntroduction

= Analog memory for training Neural Networks

» Software-equivalent accuracy with novel unit cell
= Circuit design considerations

= Conclusion
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Conclusion

= Al is introducing novel tools to develop solutions to everyday challenges
»Brain Inspired approach
=Deep Learning approach

» NVM-based crossbar arrays can accelerate the training of Deep Machine Learning
compared to GPU-based training

— Multiply-accumulate performed at the data
— Possible 500x speedup and orders-of-magnitude lower power

» Experimental results on a 2T2R+3T1C unit cell demonstrate software-equivalent
training accuracy
— MNIST, MNIST-backrand, CIFAR-10 and CIFAR-100 tested

= Need area-efficient peripheral circuitry
— Tradeoffs balancing simplicity and area-efficiency against impact on ANN performance

stefano.ambrogio@ibm.com
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Photos of us with “our first wafer of PCM-based circuit designs”

Sidney Bob Stefano Kohii
Tsal Shelb Ambrogio Hosokawa

Pritish

P. Narayanan

Not shown: Scott C. Lewis (YKT)
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Thank you!

stefano.ambrogio@ibm.com
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What do we mean by “mixed-hardware-software experiment”?

Full software Mixed-hardware-
simulation software experiment
Make a few NVM & On-chip
NVM measure, then memory array
devices capture in a (the real yield, variability,
statistical model - non-ergodic statistics, etc.)

not very accurate!

CMOS Modeled in Modeled in
Periphery, software software
Neurons, (SPICE) (SPICE)

etc. - accurate! = accurate!

7t NICE Workshop Series Stefano Ambrogio, IBM Research - AlImaden

Full hardware
experiment

On-chip
memory
array

Real CMOS
iImplementation
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Impact of different techniques

99 I
— 98 g .
X \
- 97 \ —
(&)
© 9% \ .
3 N\
5(_) 95 \ -
9 % N -
S 97.95
S -
92 &
2-PCM 2-PCM + No polarity Experiment All No Post No xLR No 6LR No No LR No Triage
nominal inversion techniques  Transfer Momentum decay
3T1C Tuning

= Polarity inversion shows the largest impact on accuracy

= Other techniques show varying importance depending on the
training dataset (MNIST, MNIST backrand, CIFAR-10/100)
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