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Main Message

 Brain cells have been computing long
before we started recording neurons

 Neuronal processing Is mediated by
non-neuronal cells —and networks

* Non-neuronal computation: a critical
untapped frontier to understand brain
function

* Non-neuronal computing: rich
opportunities for versatile and robust Al




Astrocytes: Non-Neuronal Cells

Detecting Neuronal Chaos
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Spike avalanches in vivo suggest a driven, slightly
subcritical brain state
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Experiment 1: os to 60s
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1932. Edgar Adrian, Nobel Prize 1971. David Cohen, MIT  2013. Motor neurons control a robotic
Single-Neuron Recordings Magnetoencephalography arm for paraplegic patients (BrainGate)
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f (electrical activity)

1997. Deep Brain Stimulation for 2013. TMS applied to the motor
alleviating Parkinson'’s disease cortex induces hand movement



Non-neuronal brain cells
are electrically silent

The other brain
(ki cells)
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Santiago Ramon y Cajal’s drawing of an astrocyte

Ramodn y Cajal S. Something about the physiological significance of neuroglia. Revista Trimestral Micrografia 1, 3—47, 1897
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Computational Astrocyence
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Extensive astrocyte
synchronization advances neuronal
coupling in slow wave activity in
vivo

Zsolt Szabd (3%, Laszl6 Héja?, Gergely Szalay?, Orsolya Kékesi?, Andrds Firedi*¢, Kornélia
Szebényi*$, Arpad Dobolyi®, Tamas I. Orban’®, Orsolya Kolacsek?, Tamas Tompa?, Zsombor
Miskolczy®, Laszlé Biczok (5)*, Baldzs Rézsa?, Balazs Sarkadi® & Julianna Kardos (3!

Slow wave activity (SWA) is a characteristic brain oscillation in sleep and quiet wakefulness. Although
the cell types contributing to SWA genesis are not yet identified, the principal role of neurons inthe
emergence of this essential cognitive mechanism has not been questioned. To address the possibility
of astrocytic involvement in SWA, we used a transgenic rat line expressing a calcium sensitive
fluorescent protein in both astrocytes and inter and simul lyi d astrocytic and
neuronal activity in vivo. Here we demonstrate, for the first time, that the astrocyte network display
synchronized recurrent activity in vivo coupled to UP states measured by field recording and neuronal
calcium imaging. Furthermore, we present evidence that extensive synchronization of the astrocytic
network precedes the spatial build-up of neuronal synchronization. The earlier extensive recruitment
of astrocytes in the synchronized activity is reinforced by the observation that neurons surrounded by
active astrocytes are more likely to join SWA, suggesting causality. Further supporting this notion, we
demonstrate that blockade of astrocytic gap junctional communication or inhibition of astrocytic Ca®*
transients reduces the ratio of both astrocytes and neurons involved in SWA. These in vivo findings
conclusively suggest a causal role of the astrocytic syncytium in SWA generation.

Increasing body of evidence substantiating the impact of astrocytes on neuronal activity prompted a paradigm
shift from the neurocentric philosophy of nervous system function. Accordingly, astrocytes are increasingly rec-
ognized as major players in the modulation of neuronal function under both physiological'=* and pathophysiolog-
ical conditions*”. Beyond the local astroglial control over synaptic activity*', however, little is known about the
role of astrocytic networks in modulating large-scale neuronal ensembles. Exploration of the role of large-scale
astrocytic networks in information processing and cognition still lags behind its neuronal counterpart'* . We
conceived that fundamental properties of networking astrocytes may underlie physiological network-network
interaction between astrocytes and neurons. Astrocytes are capable of 1) detecting neuronal activity, 2) respond-
ing to this activity by raising local Ca®* transients, 3) propagating the local changes over extended spatial scales
by Ca?* waves traveling through the directly and densely interconnected astrocytic syncytium and 4) modulating
neuronal activity at multiple locations by releasing gliotransmitters and other neuromodulatory substances or
regulating ionic homeostasis'*. Thus, astrocytes are ideally positioned to induce or contribute to synchroniza-
tion of large-scale neuronal networks. Along this line, we have previously demonstrated that the astrocytic and

*institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar
tuddsok koritja 2, 1117, Budapest, Hungary. YInstitute of Experimental Medicine, Hungarian Academy of Sciences,
Szigony 43, 1083, Budapest, Hungary. *Institute of Enzymology, Research Centre for Natural Sciences, Hungarian
Academy of Sciences, Magyar tuddsok korutja 2, 1117, Budapest, Hungary. *“MTA-ELTE Laboratory of Molecular
and Systems Neurobiology, Department of Physiology and Neurobiology, EGtvos Lorand University, Pazmany Péter
sétany 1C, 1117, Budapest, Hungary. “Institute of Materials and Environmental Chemistry, Research Centre for
Natural Sciences, Hungarian Academy of Sciences, Magyar tuddsok kénitja 2, 1117, Budapest, Hungary. SInstitute
of Cancer Research, Medical University Wien, Borschkegasse 8a, 1090, Wien, Austria. Zsolt Szabd and Laszld Héja
contributed equally to this work. Correspondence and requests for materials should be addressed to L.H. (email:

- hejalaszlo@ttk.mta.hu)

TIFIC REPORTS | 7: 6018 | DOI:10.1038/541 598-017-06073-7

"This hypothesis was reinforced by a recent
modelling study showing that intercellular Ca2+

signaling potentially can introduce slow oscillation

in neurons [our Ref]. |Qur experimental data

strongly supports this hypothesis by

demonstrating that increasing astrocytic influence
on neurons indeed drives them to join the
oscillatory activity (Fig. 5C). In this context it is also
important to note, that the ratio of astrocytes
involved in the SWA was found to start decreasing
right after virtually all neurons joined the
simultaneous activity (Figs 4 and 5). This
observation further supports the view that
astrocytic activity corresponds to the generation
or maintenance, rather than termination of SWA."
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Astrocytes sense and impose synchronized neuronal activity
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Experimentally-verified Computational Results
Synchronous astrocytic-induced activity in pyramidal neurons
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Computationally-explained Experimental Results
Astrocytic-induced local plasticity
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Synaptic Activity
Model

@3
g)f) Synaptic Activity as an Ising Model

* Spinss;,s; € {1,—1}

e Uniform Couplings Vi,jJ;; =1
. Why? plings Vi, j Jij
o N ~ Fraiman et al. 2009
* Brain-like near-critical dynamics
» Second-order phase transition between order and chaos

v

* Online control of dynamics using a single parameter T

 Isotropic Ising model: 2
O
 Minimize Energy function: H = z —JijSiS; §
0] B
 MC algorithm: 1. Make Random Spin flip

2. 1f Heyprrent — Hprevious <0

Accept flip

Else
Accept flip with probability: p = e ~(Heurrent=Hprevious) /KT



Synaptic Activity
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! Synaptic Activity as afi 1sing Model

* Spinss;,s; € {1,—1}
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/ Finding 2"d order Phase Transition in the Ising Model

» Confirmed phase transition with measures Magnetic Susceptibility
of variability in macroscopic Ising variables

0-301 — |sotropic Ising Model 256 x 256 : —— Cluster Ising Model 275 x 275 | g 005
--- |sotropic Critical T E —— Cluster Ising Model 225 x 225 '
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Brain-Like Critical Transition in the Ising Model
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Correlation Network

Correlation Network Degree Distributions

» Constructed pair-wise spin correlation matrix C

< s5i(0)si (1) >—< s5;(t) ><55(¢t) >
(<s2(®) > = <s5:(6) >2)(< sP(0) > — < 5;(t) >?)

Cij =

Frequency

» Selected various correlation thresholds p

Sub-critical T=1.7

Near-critical T= 2.3

Super-Critical T=3.3
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» Binarize correlation network connectivity matrix Degree -~ Degree
Ve
P .
w: (1 Cy>p //_\\\(/ Correlation Networks

ij = 0, Cij <p //Linear in\ < Degree >~ 713

‘\ Iog-log < Degree > = 127

\ scale / S

________________________ N '~ T T < Degree > = 26

» Power law scaling at T,

» Agrees with second order phase transition

Frequency

v

* Near-critical dynamics similar to fMRI data

1 2 3

10 10
Degree

Fraiman et al. 2009

10

Disclaimer S __ Touboul & Destexhe 2017
Power-law statistics alone are not sufficient indications of criticality




Synaptic Activity
Model

o)
g)
" From Synaptic Activity to Astrocytic Ca* waves

» Comprehensive 3D model of astrocytic biochemical pathway:

|175 C? c* I I
1+L> CZ+ Kppes )l ¥ \C*+ Ky )\ +K5) ™ "°F

Ks

Cat- %iéyw&w*ﬁ)}(% -1+ cl)C)I{vERICZ iZKéR)}

dh_ .| h(C,I)—h . ) .
h: idden variable h Postsynaptic
dt T, (C, 1 Neuron
1
_ Extracellular
- |- gmo,ved from'cytosol by SERCA
De Pitta et al. 2009 - RLIMPS - Presynaptic
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Synaptic Activity Astrocytic Activity
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g) Model
" From Synaptic Activity to Astrocytic Ca* waves

{%0 i ) )

CZ
Ca’*t: == 3n3h3 +1)(Cy—(1+¢;)C) — S
dt (rem3,n 1) (Co — ( c1)C) — vgg C2+K,§R

. dh_ he(C,D)—h

S Postsynaptic
dt Th (C, I)

Neuron

Extracellular

Meidbdifications:
* BlpodetetGdYapposphiarmbiyils; )

per synapse i @
Ko

Presynaptic
Neuron

De Pitta et al. 2009

Astrocyte Internal C a2+ Store
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Simulation

Ising Spin States

|—>

Updated every At = 50

i ms astrocytic model e

mtegratlon timesteps

; Biological constraint:
: Spontaneous cortical neuronal
flrlng rates mostly range 0-20 Hz.

Synaptic Activity

Astrocytic Activity

Model

Ising model spin states were transformed into biological scales of time and quantity

Input Transformation  Astrocyte Model Calcium Frequency Output
—_— —_— —_— '|"_| 0.6 1

): > [input Z vﬁ) S |

| .

|

e L 0.2 1

: ""u‘ '0,." ‘—J L

| ./ "" *0 20 40 60 80 100 120

: & Ensures that spins *, - S

| i alwayss;=1,are i 'mf( )

k-4 received by astrocytic ¥ |

| * model at maximal : :

| % rateof20Hz. & T U TRUUTL oo I
| ‘}.,. | Astrocytic model frequency i
T e ’ I ranges from 0-0.1 Hz [




) Synaptic Activity Astrocytic Activity
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g) _ Model

f Astrocytic Response to Neuronal Dynamics
Tiniviar = 2.2 < Tpe Calcium Frequency Output
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" Astrocyte detects transitions from order to disorder

D

B

* Astrocytic response existed only for transition Tjy,; < Thear criticat = Trinat > Tne

7 I
* Response averaged over 5 cluster Ising models | Both near-critical and chaotic Tyy; |
I did not alter astrocytic response |
g - - |
e Each transition T;,,; — Tr;,q; Was averaged over 10 simulations o |
ini final R 7
,,,,,, |
4_/” \4
Astrocyticfrequency Changes atthe SUb-CriticaI Tlnl - 2.2 Near-Critical Tlnl - 2.3 Super_critical Tlnl - 2.5
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Xie et al. PLOS 2012

Shigaucritical (Chaos)

T=2.8
0] 20
7i(Hz)
Order Critical Region Chaos Network State
Binomial Uniform Gaussian

s this magice?
Insight %Q

—

Inverse scaling in learning the Glu receptor density

Disproportional learning of Glu weights between
lower synaptic rates and higher synaptic rates

« Sensitivity to Glu in lower-rate synapses is much higher
than the insensitivity of the higher rate synapses

In chaos, the distribution of spiking rates changes
to Gaussian u=10Hz: Synapses that had low rates
(<10H2z) increase to ~10Hz and synapses with high
rates (>10Hz) decrease to ~10Hz

The sudden increase in rates in the learned as low-
rate synapses provides disproportionally larger Glu
stimulation to the astrocyte, which results in an
overall increase in Ca?* frequency

Spiking Rate Distribution
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Astrocytic module @ Loihi chip

released December 2018

{0 18 commits ¥ 3 branches “r1release 48 2 contributors e View license
Branch: master = New pull request Create new file  Upload files | Find file

& michaelgzt Update README.md

Bm combra_loihi version 0.1
B demos Rename examples/exampled.py to demos/demod.py
M figures Add files via upload
gitignore package tree
2] LICEMSE package tree
=] README.md Update README.md
EF README.md

combra_loihi

combra_loihi is a neuromarphic computing library for Computational Astrocyte and more developed specifically for Intel's
Loihi neuromorphic processor. The library is developed by Computational Brain Lab (ComBra) at Rutgers University.

Version 0.1 (11/2018)

Prerequisites:

* python 3.5.2
* NxSDK 0.7

For more information, please go to combra_loihi WiKi

Latest commit @9adede a day ago
20 days ago

10 days ago

19 days ago

a month ago

a month ago

a day ago

#

https://github.com/combra-lab/combra_loihi



Computations

at the edge of
Chaos

Carrying out computations at the edge of chaos is based on
the hypothesis that complex systems can show an extended
computational power when performing in between ordered

and chaotic dynamics

A Liquid State Machine whose reservoir shows critical

dynamics could perform efficient computations in real-time

Not much is yet known about the computational power of
neural networks that are constructed consistently with

neurobiology

o
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Our results pave the way for an §®6 syl‘ﬁorganized criticality
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Computational Astrocyence @ ComBra Lab

G Tang, A Shah, KP Michmizos, “Spiking Neural Network on Neuromorphic Hardware for Energy-Efficient Unidimensional
SLAM”, arXiv preprint arXiv:1903.02504, 2019

» | Polykretis, V Ivanov, KP Michmizos, “Computational Astrocyence: Astrocytes encode inhibitory activity into the frequency and
spatial extent of their calcium elevations,” IEEE Brain Health Informatics, Chicago, May 2019

* V lvanov, | Polykretis, KP Michmizos, “Axonal Conduction Velocity Impacts Neuronal Network Oscillations,” IEEE Brain Health
Informatics, Chicago, May 2019

* | Polykretis, V Ivanov, KP Michmizos, “The Astrocytic Microdomain as a Generative Mechanism for Local Plasticity,”
International Conference on Brain Informatics, 2018 (pp.10)

* | Polykretis, V lvanov, K.P. Michmizos, " A Neural-Astrocytic Network Architecture: Astrocytic calcium waves modulate
synchronous neuronal activity," International Conference on Neuromorphic Systems (ICONS), Knoxville, Tennessee, July 23-26,
2018 (pp. 8)

« G Tang, KP Michmizos, " Gridbot: An autonomous robot controlling by a spiking neural network mimicking the brain's
navigational system," International Conference on Neuromorphic Systems (ICONS), Knoxville, Tennessee, July 23-26, 2018 (pp. 8)

* G.Tang, KP Michmizos, " Gridbot: A Spiking Neural Network Model of the Brain’s Navigation System for Autonomous Robots,"
6th Neuro Inspired Computational Elements Workshop (NICE 2017), Intel Hillsboro, OR, February 27th- March 1st, 2018

* L. Kozachkov, KP. Michmizos, " Brain-morphism: Astrocytes as Memory Units," 6th Neuro Inspired Computational Elements
Workshop (NICE 2017), Intel Hillsboro, OR, February 27th- March 1st, 2018

e L. Kozachkov, KP Michmizos, " A Computational Role for Astrocytes in Memory," arXiv:1707.05649, 2017

o L. Kozachkov, KP Michmizos, " The Causal Role of Astrocytes in Slow-Wave Rhythmogenesis: A Computational Modelling
Study," arXiv:1702.03993, 2017
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Research on caﬁ?{lle}a\}:s now at a similar stage to research on recurrent neural networks for speech
recognition at the beginning of this century. There are fundamental representational reasons for
believing that 1t 1s a better approach but 1t probably requires a lot more Il insights before it can
uut-perfnrm a hlghl}" develnped lﬂ!‘:hnﬂlﬂg}' The fact thal a simple Sdpsules system already gives

unP , i TG -ehteHs 1s an early indication that %ﬁgles are a
direction worth explnnng VLBW the avwl Leammg dimensions

Hinton NIPS 2017
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