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Main Message

• Brain cells have been computing long 
before we started recording neurons

• Neuronal processing is mediated by 
non-neuronal cells ─ and networks 

• Non-neuronal computation: a critical 
untapped frontier to understand brain 
function

• Non-neuronal computing: rich 
opportunities for versatile and robust AI



Astrocytes: Non-Neuronal Cells 

Detecting Neuronal Chaos
2x

Astrocytes oversee the 

neuronal activity

with non-overlapping 

receptive fields Brodeur & Rouat ICANN 2012
Maass, Natschlager, Markram Neural Computation 2002

Critical Brain 

Hypothesis: 

Certain biological neuronal 

networks operate near phase 

transitions

Reservoir Computing: 

Recursive artificial neural 

networks tuned towards self-

organized criticality maximize 

a number of properties 

considered favorable for 

computation

Suggesting a functional role 

for the long-identified 

intracellular Calcium waves

https://en.wikipedia.org/wiki/Biological_neural_network
https://en.wikipedia.org/wiki/Phase_transition
https://en.wikipedia.org/wiki/Biological_neural_network


Real-time SNN-control of Robots 

[NICE ’17 & ’18, CCN ’17, ICONS ’18]

[Tang, Shah, Michmizos arXiv:1903.02504]



Tang, Shah, Michmizos arXiv:1903.02504 



neurons
1932. Edgar Adrian, Nobel Prize

Single-Neuron Recordings
1971. David Cohen, MIT

Magnetoencephalography

2013. TMS applied to the motor 
cortex induces hand movement

2013. Motor neurons control a robotic 
arm for paraplegic patients (BrainGate)

Information =
f (electrical activity)

1997. Deep Brain Stimulation for 
alleviating Parkinson’s disease



10% 90%

The other brain
(glia cells)neurons

Non-neuronal brain cells
are electrically silent



Ramón y Cajal S. Something about the physiological significance of neuroglia. Revista Trimestral Micrografía 1, 3–47, 1897

Santiago Ramón y Cajal’s drawing of an astrocyte
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Computational Astrocyencecombra.cs.rutgers.edu

[ACM ICONS ‘18] 
[ACM BI ‘18] 

[IEEE BHI ‘19]  



Oscillations

NeuroModulation

Synchronization

Local Plasticity

Chaos

Astrocytic Cell Neuronal-Astrocytic Network Network Behavior

Computational Astrocyence

Microscopic Phenomena Macroscopic Phenomena



μm

μm

Bryant et al. Nature Reviews, 2004

Putting a Neural-Astrocytic Network to Sleep

Oscillations emerge as a network property

Probabilistic neural connections, 
with a Gaussian fall-off 
𝑃𝑃 𝑟𝑟 𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 − ⁄𝑟𝑟𝑖𝑖𝑖𝑖2 2𝜎𝜎2

• 𝑟𝑟𝑖𝑖𝑖𝑖 the distance between 
neurons 𝑖𝑖 and 𝑗𝑗

• 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜎𝜎 are the peak and 
width of the probability 
distribution

• No function – just basal 
neural activity

Local Sleep in Awake Rats, Nature 2011

Oscillations NeuroModulation Synchronization Local Plasticity Chaos



"This hypothesis was reinforced by a recent
modelling study showing that intercellular Ca2+
signaling potentially can introduce slow oscillation
in neurons [our Ref]. Our experimental data
strongly supports this hypothesis by
demonstrating that increasing astrocytic influence
on neurons indeed drives them to join the
oscillatory activity (Fig. 5C). In this context it is also
important to note, that the ratio of astrocytes
involved in the SWA was found to start decreasing
right after virtually all neurons joined the
simultaneous activity (Figs 4 and 5). This
observation further supports the view that
astrocytic activity corresponds to the generation
or maintenance, rather than termination of SWA."

Oscillations NeuroModulation Synchronization Local Plasticity Chaos



The overlap of the neural network state with the stored memories. N = 500, p=7, q=6 

Intuition

• The NAN has an energy surface that has 

minima at each memory 𝜉𝜉𝑖𝑖𝜈𝜈 but which also 

tilts steadily while the system is in a particular 

state, so that a downhill move from 𝜉𝜉𝑖𝑖𝜈𝜈to 

𝜉𝜉𝑖𝑖𝜈𝜈+1occurs eventually

• But this picture is a little deceptive, because the dynamics 

cannot be represented simply as descent on an energy 

landscape, unless the connections are symmetric

Oscillations NeuroModulation Synchronization Local Plasticity Chaos



KEY POINT #1
• Astrocytes 

encode 
synchronous 
synaptic 
activity into 
the extent of 
their Ca2+ 
waves

KEY POINT #2
• They can 

impose 
synchronization 
to a group of 
postsynaptic 
neurons

Astrocytes sense and impose synchronized neuronal activity

Oscillations NeuroModulation Synchronization Local Plasticity Chaos

[ACM ICONS ‘18] 
[ACM BI ‘18] 

[IEEE BHI ‘19]  



Experimentally-verified Computational Results
Synchronous astrocytic-induced activity in pyramidal neurons

Fellin et al, Neuron, 2004  Data Model

Oscillations NeuroModulation Synchronization Local Plasticity Chaos

[ACM ICONS ‘18] 
[ACM BI ‘18] 

[IEEE BHI ‘19]  



Data Model

Computationally-explained Experimental Results
Astrocytic-induced local plasticity

Oscillations NeuroModulation Synchronization Local Plasticity Chaos

KEY POINT #3
• Two Ca2+ waves in the 

micro-domain: a) 
VGCCs and b)Glu-IP3

• Process-specific VGCC 
Ca2+ waves restricted to 
processes with active 
presynaptic sites

• Microdomain-wide 
Ca2+ waves induced 
heteroshynaptic
plasticity in inactive 
synapses

• Possible astrocytic 
mechanism for local 
clustering of dendritic 
spines  within 15 μm

Scholl et al. Neuron 2017  

[ACM ICONS ‘18] 
[ACM BI ‘18] 

[IEEE BHI ‘19]  



Oscillations NeuroModulation Synchronization Local Plasticity Chaos

NeuroScience NeuroComputing

Mechanistic Origin

Memory Transitions

Hebbian Learning

Mechanistic Origin

Mesochronous Communication

Behavioral Time Scales

Contrast

Optimize Computation

Understand                        Use



Astrocyte: A single cell Detects Neuronal Chaos

O’Connor et al 2010
Roxin et all 2011

Synchronous Synaptic 
Clustering

Nonchaotic Synaptic Activity Chaotic Synaptic Activity

EXPERIMENTAL MODEL RESULTS

Takahashi et al., 2012

Cortical Firing Rate 
Distribution

Ivanov et al, NICE 2019 subm.



Model

• Why?

• Brain-like near-critical dynamics
• Second-order phase transition between order and chaos

• Online control of dynamics using a single parameter 𝑇𝑇

• Isotropic Ising model: 

• Minimize Energy function:

• MC algorithm:

Synaptic Activity as an Ising Model
s1 s2 s3

s4 s5 s6

s7 s8 s9

J12 J23

J25J14 J36

J45 J56

J58J47 J69

J78 J89

𝐻𝐻 = �
𝑖𝑖,𝑗𝑗

−𝐽𝐽𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗

1. Make Random Spin flip

2. If  𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≤ 0

Accept flip
Else

Accept flip with probability: 𝑝𝑝 = 𝑒𝑒 ⁄−(𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 𝑘𝑘𝑘𝑘
Is

ot
ro

pi
c

𝑇𝑇𝑐𝑐𝑇𝑇 < 𝑇𝑇𝑐𝑐 𝑇𝑇 > 𝑇𝑇𝑐𝑐

Synaptic Activity

• Spins 𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗 ∈ 1,−1

• Uniform Couplings ∀𝑖𝑖, 𝑗𝑗 𝐽𝐽𝑖𝑖𝑖𝑖 = 1

Fraiman et al. 2009



J56

J25 J36

J23

J45

J47 J58

J78

Model

Synaptic Activity as an Ising Model
s1 s2 s3

s4 s5 s6

s7 s8 s9

J12

J14

J69

J89

Is
ot

ro
pi

c

𝑇𝑇𝑐𝑐𝑇𝑇 < 𝑇𝑇𝑐𝑐 𝑇𝑇 > 𝑇𝑇𝑐𝑐

• Spins 𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗 ∈ 1,−1

• Uniform Couplings ∀𝑖𝑖, 𝑗𝑗 𝐽𝐽𝑖𝑖𝑖𝑖 = 1

Synaptic Activity

Takahashi et al. 2012

Biological 
Implausibility: 
Spin clusters lack local 
spatial correlation

Experimental Data:
• Spatially correlated 

synaptic activity 
• Functional and 

synchronous clusters 
of neurons

Clustered Couplings

C
lu

st
er

Kastelakis et al. 2016



Finding 2nd order Phase Transition in the Ising Model

• Confirmed phase transition with measures 
of variability in macroscopic Ising variables

• Magnetic susceptibility:

𝑀𝑀 Ising magnetization for N spins, 
∑𝑖𝑖
𝑁𝑁 𝑠𝑠𝑖𝑖
𝑁𝑁

<> temporal average

• Heat capacity:

𝐻𝐻 is system energy

𝜒𝜒 =
1
𝑇𝑇

< 𝑀𝑀2 > − < 𝑀𝑀 >2

𝐶𝐶𝐻𝐻 =
1
𝑇𝑇2

< 𝐻𝐻2 > − < 𝐻𝐻 >2

Magnetic Susceptibility

𝜒𝜒

Heat Capacity

𝐶𝐶 𝐻𝐻

𝑇𝑇

Model
Synaptic Activity



• Correlation Network

• Constructed pair-wise spin correlation matrix 𝐶𝐶

• Selected various correlation thresholds 𝜌𝜌

• Binarize correlation network connectivity matrix 

𝑊𝑊:

• Power law scaling at 𝑇𝑇𝑛𝑛𝑛𝑛
• Agrees with second order phase transition

• Near-critical dynamics similar to fMRI data

Brain-Like Critical Transition in the Ising Model

𝐶𝐶𝑖𝑖𝑖𝑖 =
< 𝑠𝑠𝑖𝑖 𝑡𝑡 𝑠𝑠𝑗𝑗 𝑡𝑡 >−< 𝑠𝑠𝑖𝑖 𝑡𝑡 >< 𝑠𝑠𝑗𝑗 𝑡𝑡 >

< 𝑠𝑠𝑖𝑖2 𝑡𝑡 > − < 𝑠𝑠𝑖𝑖 𝑡𝑡 >2 < 𝑠𝑠𝑗𝑗2 𝑡𝑡 > − < 𝑠𝑠𝑗𝑗 𝑡𝑡 >2

𝑊𝑊𝑖𝑖𝑖𝑖 = �
1, 𝐶𝐶𝑖𝑖𝑖𝑖 > 𝜌𝜌
0, 𝐶𝐶𝑖𝑖𝑖𝑖 ≤ 𝜌𝜌 < 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 > ≈ 713

< 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 > ≈ 127

< 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 > ≈ 26

Correlation Networks

Degree Degree

Fr
eq

ue
nc

y

Sub-critical T = 1.7 Near-critical T = 2.3 Super-Critical T = 3.3

Degree

Correlation Network Degree Distributions

Linear in 
log-log 
scale

Fraiman et al. 2009

Degree

Fr
eq

ue
nc

y

Model
Synaptic Activity

Disclaimer
Power-law statistics alone are not sufficient indications of criticality 

Touboul & Destexhe 2017



Glutamate (𝜸𝜸): 
• Released into synaptic cleft as 

signaling molecules
• Depolarizes postsynaptic site

IP3 (𝑰𝑰):
• Produced from Glutamate 

Receptor stimulation
• Released into astrocytic cytosol

IP3 Receptor (𝒓𝒓𝑪𝑪):
• Stimulated by cytosolic 𝐼𝐼𝐼𝐼𝐼
• Located on astrocytic internal 

𝐶𝐶𝐶𝐶2+store membrane

Calcium (𝑪𝑪𝑪𝑪𝟐𝟐+):
• Released into astrocytic cytosol 

from internal 𝐶𝐶𝐶𝐶2+ store 
• Released by activated IP3 

Receptors

PLCδ Enzyme (𝒗𝒗𝜹𝜹):
• Activated by cytosolic 𝐶𝐶𝐶𝐶2+
• Located in astrocytic cytosol

IP3 (𝑰𝑰):
• Produced from Glutamate 

Receptor stimulation
• Released into astrocytic cytosol
• Produced through PLCδ

Enzyme

IP3 (𝑰𝑰):
• Produced from Glutamate 

Receptor stimulation
• Released into astrocytic cytosol
• Produced through PLCδ

Enzyme
• Decay 

Calcium Induced Calcium 
Wave:
• Cycle of cytosolic IP3 and 

Calcium fluctuations result to 
spatially traveling 𝐶𝐶𝐶𝐶2+ wave

SERCA Pump :
• Removes 𝐶𝐶𝐶𝐶2+ from astrocytic 

cytosol into internal 𝐶𝐶𝐶𝐶2+ store
• Located on astrocytic internal  

𝐶𝐶𝐶𝐶2+ store membrane

Calcium (𝑪𝑪𝑪𝑪𝟐𝟐+):
• Released into astrocytic cytosol 

from internal 𝐶𝐶𝐶𝐶2+ store 
• Released by activated IP3 

Receptors
• Removed from cytosol by SERCA 

Pumps

Action Potential (AP):
• Arrives at presynaptic site
Glutamate Receptor (𝒗𝒗𝜷𝜷):
• Sensitive to extracellular 

Glutamate
• Located on astrocytic cellular 

membrane

• Comprehensive 3D model of astrocytic biochemical pathway:

• Cytosolic 𝐼𝐼𝐼𝐼𝐼 (𝐼𝐼)

• Cytosolic 𝐶𝐶𝐶𝐶2+ (𝐶𝐶) 

• Dimensionless hidden variable ℎ

𝛾𝛾

𝐼𝐼

From Synaptic Activity to Astrocytic Ca2+ waves

Astrocyte Internal 𝐶𝐶𝐶𝐶2+ Store

𝐶𝐶

Presynaptic
Neuron

− 𝑣𝑣𝐸𝐸𝐸𝐸
𝐶𝐶2

𝐶𝐶2 + 𝐾𝐾𝐸𝐸𝐸𝐸2

+
𝑣𝑣𝛿𝛿

1 + 𝐼𝐼
𝜅𝜅𝛿𝛿

𝐶𝐶2

𝐶𝐶2 + 𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
− 𝑣𝑣3𝐾𝐾

𝐶𝐶4

𝐶𝐶4 + 𝐾𝐾𝐷𝐷
𝐼𝐼

𝐼𝐼 + 𝐾𝐾3
− 𝑟𝑟5𝑃𝑃𝐼𝐼

𝑑𝑑𝐼𝐼
𝑑𝑑𝑡𝑡

=

𝑑𝑑𝐶𝐶
𝑑𝑑𝑡𝑡

=

𝑑𝑑ℎ
𝑑𝑑𝑡𝑡

=

𝐼𝐼𝐼𝐼𝐼:

𝐶𝐶𝐶𝐶2+:

ℎ: ℎ∞ 𝐶𝐶, 𝐼𝐼 − ℎ
𝜏𝜏ℎ 𝐶𝐶, 𝐼𝐼

𝑣𝑣𝛽𝛽
𝛾𝛾0.7

𝛾𝛾0.7 + 𝐾𝐾𝑅𝑅 1 +
𝐾𝐾𝑝𝑝
𝐾𝐾𝑅𝑅

𝐶𝐶
𝐶𝐶 + 𝐾𝐾𝜋𝜋

𝑟𝑟𝐶𝐶𝑚𝑚∞
3 𝑛𝑛∞3 ℎ3 + 𝑟𝑟𝐿𝐿 𝐶𝐶0 − 1 + 𝑐𝑐1 𝐶𝐶

𝑪𝑪𝑪𝑪𝟐𝟐+ WaveAP

De Pitta et al. 2009

Model
Synaptic Activity



Our Modifications:
• Expanded to 𝑁𝑁 synaptic inputs
Input:
• Glutamate (𝛾𝛾𝑖𝑖) per synapse 𝑖𝑖
Weight:
• Glutamate Receptor density (𝑣𝑣𝛽𝛽𝑖𝑖)

per synapse 𝑖𝑖

1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝑣𝑣𝛽𝛽𝑖𝑖
𝛾𝛾𝑖𝑖0.7

𝛾𝛾𝑖𝑖0.7 + 𝐾𝐾𝑅𝑅 1 +
𝐾𝐾𝑝𝑝
𝐾𝐾𝑅𝑅

𝐶𝐶
𝐶𝐶 + 𝐾𝐾𝜋𝜋

𝑣𝑣𝛽𝛽
𝛾𝛾0.7

𝛾𝛾0.7 + 𝐾𝐾𝑅𝑅 1 +
𝐾𝐾𝑝𝑝
𝐾𝐾𝑅𝑅

𝐶𝐶
𝐶𝐶 + 𝐾𝐾𝜋𝜋

𝛾𝛾

𝐼𝐼

Astrocyte Internal 𝐶𝐶𝐶𝐶2+ Store

𝐶𝐶

Presynaptic
Neuron

− 𝑣𝑣𝐸𝐸𝐸𝐸
𝐶𝐶2

𝐶𝐶2 + 𝐾𝐾𝐸𝐸𝐸𝐸2

+
𝑣𝑣𝛿𝛿

1 + 𝐼𝐼
𝜅𝜅𝛿𝛿

𝐶𝐶2

𝐶𝐶2 + 𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
− 𝑣𝑣3𝐾𝐾

𝐶𝐶4

𝐶𝐶4 + 𝐾𝐾𝐷𝐷
𝐼𝐼

𝐼𝐼 + 𝐾𝐾3
− 𝑟𝑟5𝑃𝑃𝐼𝐼

𝑑𝑑𝐼𝐼
𝑑𝑑𝑡𝑡

=

𝑑𝑑𝐶𝐶
𝑑𝑑𝑡𝑡

=

𝑑𝑑ℎ
𝑑𝑑𝑡𝑡

=

𝐼𝐼𝐼𝐼𝐼:

𝐶𝐶𝐶𝐶2+:

ℎ: ℎ∞ 𝐶𝐶, 𝐼𝐼 − ℎ
𝜏𝜏ℎ 𝐶𝐶, 𝐼𝐼

𝑟𝑟𝐶𝐶𝑚𝑚∞
3 𝑛𝑛∞3 ℎ3 + 𝑟𝑟𝐿𝐿 𝐶𝐶0 − 1 + 𝑐𝑐1 𝐶𝐶

𝑪𝑪𝑪𝑪𝟐𝟐+ WaveAP

Model
Synaptic Activity Astrocytic Activity

De Pitta et al. 2009

From Synaptic Activity to Astrocytic Ca2+ waves



Output:
• 𝐶𝐶𝐶𝐶2+ wave frequency 
Our Modifications:
• Expanded to multiple synaptic 

inputs
• Learning added to Glutamate 

Receptor density (𝑣𝑣𝛽𝛽𝑖𝑖)

Weight Learning:
• Depends on previous synaptic rate 𝑟̂𝑟
Weight Learning:
• Depends on previous synaptic rate 𝑟̂𝑟

• Inverse scaling relationship

1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝑣𝑣𝛽𝛽𝑖𝑖
𝛾𝛾𝑖𝑖0.7

𝛾𝛾𝑖𝑖0.7 + 𝐾𝐾𝑅𝑅 1 +
𝐾𝐾𝑝𝑝
𝐾𝐾𝑅𝑅

𝐶𝐶
𝐶𝐶 + 𝐾𝐾𝜋𝜋

− 𝑣𝑣𝐸𝐸𝐸𝐸
𝐶𝐶2

𝐶𝐶2 + 𝐾𝐾𝐸𝐸𝐸𝐸2

+
𝑣𝑣𝛿𝛿

1 + 𝐼𝐼
𝜅𝜅𝛿𝛿

𝐶𝐶2

𝐶𝐶2 + 𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
− 𝑣𝑣3𝐾𝐾

𝐶𝐶4

𝐶𝐶4 + 𝐾𝐾𝐷𝐷
𝐼𝐼

𝐼𝐼 + 𝐾𝐾3
− 𝑟𝑟5𝑃𝑃𝐼𝐼

𝑑𝑑𝐼𝐼
𝑑𝑑𝑡𝑡

=

𝑑𝑑𝐶𝐶
𝑑𝑑𝑡𝑡

=

𝑑𝑑ℎ
𝑑𝑑𝑡𝑡

=

𝐼𝐼𝐼𝐼𝐼:

𝐶𝐶𝐶𝐶2+:

ℎ: ℎ∞ 𝐶𝐶, 𝐼𝐼 − ℎ
𝜏𝜏ℎ 𝐶𝐶, 𝐼𝐼

𝑟𝑟𝐶𝐶𝑚𝑚∞
3 𝑛𝑛∞3 ℎ3 + 𝑟𝑟𝐿𝐿 𝐶𝐶0 − 1 + 𝑐𝑐1 𝐶𝐶

𝑣𝑣𝛽𝛽𝑖𝑖 = 𝛼𝛼
1
𝑟̂𝑟𝑖𝑖

𝑟̂𝑟𝑖𝑖(Hz)

𝑣𝑣 𝛽𝛽
𝑖𝑖

Hz

Training Rates 𝑟̂𝑟Brain-like Ising Dynamics

𝑟̂𝑟𝑖𝑖

𝛾𝛾

𝐼𝐼

Astrocyte Internal 𝐶𝐶𝐶𝐶2+ Store

𝐶𝐶

Presynaptic
Neuron

𝑪𝑪𝑪𝑪𝟐𝟐+ WaveAP

From Synaptic Activity to Astrocytic Ca2+ waves
Model
Synaptic Activity Astrocytic Activity

Experimental Data:
Glutamate receptor density found to 
inversely scale with neuronal activity 

over past 4-6 hours Xie et al. PLOS 2012

De Pitta et al. 2009



Simulation

𝛾̅𝛾 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝛾̅𝛾, 𝑣̅𝑣𝛽𝛽)

Ising Spin States Astrocyte ModelInput Transformation

• Ising model spin states were transformed into biological scales of time and quantity

𝛾𝛾𝑖𝑖 = �𝑔𝑔 ∈ 𝑅𝑅, 𝑠𝑠𝑖𝑖 = 1
0, 𝑠𝑠𝑖𝑖 = −1

If spins updated:

Else
𝛾̅𝛾 = �0

Calcium Frequency Output

Time (S)

𝐶𝐶𝐶𝐶
2+

Astrocytic model frequency 
ranges from 0-0.1 Hz

Updated every Δt = 50
ms astrocytic model 
integration timesteps 

Integration timestep 
Δt = 1 ms

Biological constraint: 
Spontaneous cortical neuronal 
firing rates mostly range 0-20 Hz.

Ensures that spins 
always 𝑠𝑠𝑖𝑖 = 1, are 

received by astrocytic 
model at maximal 

rate of 20 Hz.

Model
Synaptic Activity Astrocytic Activity



Astrocytic Response to Neuronal Dynamics

𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≈ 0.03 Hz

Calcium Frequency Output

Time (s)

𝐶𝐶𝐶𝐶
2+

Time (s)

𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 2.2 < 𝑇𝑇𝑛𝑛𝑛𝑛

𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 2.8 > 𝑇𝑇𝑛𝑛𝑛𝑛

𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝛾̅𝛾, 𝑣̅𝑣𝛽𝛽)

𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝛾̅𝛾, 𝑣̅𝑣𝛽𝛽) 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≈ 0.05 Hz

𝚫𝚫𝒇𝒇 =
𝒇𝒇𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 − 𝒇𝒇𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃

𝒇𝒇𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃
= 𝟒𝟒𝟒𝟒𝟒

𝐶𝐶𝐶𝐶
2+

Continuous 
transition

Model
Synaptic Activity Astrocytic Activity



Δ𝑇𝑇

𝐶𝐶𝐶𝐶
2+

𝑓𝑓
Δ𝑀𝑀

∗
Δ𝑓𝑓

∗
%

Sub-critical 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 = 2.2 Near-critical 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 = 2.3 Super-critical 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 = 2.5

Astrocyte detects transitions from order to disorder 

Astrocytic frequency changes at the 
transition across the near-critical 
range, 𝑇𝑇𝑛𝑛𝑛𝑛 = [2.25,2.45], where a 2nd

order phase transition exists 
between order and chaos.

Δ𝑇𝑇 Δ𝑇𝑇

• Astrocytic response existed only for transition 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 < 𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 → 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 > 𝑇𝑇𝑛𝑛𝑛𝑛
• Response averaged over 5 cluster Ising models

• Each transition 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 → 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 was averaged over 10 simulations

Both near-critical and chaotic 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖
did not alter astrocytic response

Changes in magnetization did 
not drive astrocytic response

Δ𝑀𝑀∗ =< 𝑀𝑀𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 >−< 𝑀𝑀𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 >

Model
Synaptic Activity Astrocytic Activity



Insight
• Inverse scaling in learning the Glu receptor density

• Disproportional learning of Glu weights between 
lower synaptic rates and higher synaptic rates

• Sensitivity to Glu in lower-rate synapses is much higher 
than the insensitivity of the higher rate synapses

• In chaos, the distribution of spiking rates changes 
to Gaussian μ=10Hz: Synapses that had low rates 
(<10Hz) increase to ~10Hz and synapses with high 
rates (>10Hz) decrease to ~10Hz

• The sudden increase in rates in the learned as low-
rate synapses provides disproportionally larger Glu 
stimulation to the astrocyte, which results in an 
overall increase in Ca2+ frequency

0                                             20

T=2

Subcritical

T=2.1T=2.2T=2.3

Near-criticalSuper-critical (Chaos)

𝑟̂𝑟𝑖𝑖(Hz)

𝑟̂𝑟𝑖𝑖(Hz)

𝑣𝑣 𝛽𝛽
𝑖𝑖

𝑣𝑣𝛽𝛽𝑖𝑖 = 𝛼𝛼
1
𝑟̂𝑟𝑖𝑖

T=2.4T=2.5

Order              Critical Region                Chaos

Binomial             Uniform Gaussian

Network State

Spiking Rate Distribution

Is this magic?
Xie et al. PLOS 2012



Astrocytic module @ Loihi chip  
released December 2018

https://github.com/combra-lab/combra_loihi
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Computations 

at the edge of 

Chaos

• Carrying out computations at the edge of chaos is based on 

the hypothesis that complex systems can show an extended 

computational power when performing in between ordered 

and chaotic dynamics

• A Liquid State Machine whose reservoir shows critical 

dynamics could perform efficient computations in real-time

• Not much is yet known about the computational power of 

neural networks that are constructed consistently with 

neurobiology

• Our results pave the way for an SOC, self-organized criticality
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Astrocytic Mechanisms for

• Neural Synchronization

• Synaptic Changes

Astrocytic Computation for

• Network Oscillations

• Order/Chaotic network

Neuromorphic Hardware for

• Astrocytic Processing

• Astrocytic Learning

CNS

Systems

Maps

Networks

Neurons

Synapses

Molecules

1 m

10 cm
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100 μm

1 μm

1 Å

combra.cs.rutgers.edu

Less Machine Learning

• Reservoir Networks

• Learning Methods



Computational Astrocyence @ ComBra Lab
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new time and learning dimensions

Hinton NIPS 2017
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