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The olfactory “hard problem”: learning in the wild

Stronger odor of interest
Low background interference

Weak odor of interest
High background interference

Odor-specific sensor activation 
patterns are severely disrupted 
by interference from other 
environmental odorants, and 
by other uncontrolled physical 
variables.  



What is learning in the wild ? Why is it hard ?

Data sampling in the wild

• Variable environment:  unpredictable concentrations, overlapping odors, temperature, humidity...
• Incoming data may have missing values.
• Training sets may not be labelled. 
• Sensor drift (over time, or due to contamination).

Algorithm requirements

• Must exhibit concentration tolerance (while also providing an estimate of concentration).
• Must be able to identify the signatures of known odors despite substantial interference/variance. 
• Must exhibit rapid one- or few-shot  learning of novel stimuli. 
• Must support online learning (no catastrophic forgetting, no storage of training data). 
• Must exhibit semi-supervised/unsupervised learning.
• Must provide a “none of the above” option (classifier confidence). 
• Must have a solution for sensor drift (owing to time and/or contamination)
• Must be robust to “wild”, poorly-behaved inputs without parameter re-tuning. 



 UCSD gas sensor drift dataset*. 

 6 odors, each presented at a 
wide range of concentrations. 
 Ammonia
 Acetaldehyde
 Acetone
 Ethylene
 Ethanol
 Toluene

 13190 samples
Split into 10 batches.

Batch 1 (Months 1-2)
Batch 10 
(Month 36)

Ten “batches” of data, taken over 3 years

Data set

*Vergara et al., 2012; Rodriguez-Lujan et al., 2014
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 SNN; the architecture is part of the algorithm; local synaptic learning.
 Spike phase coding in the core feedback loop; exciting but not being discussed today.  

Mammalian olfactory bulb network 
Biomimetic model schematic

Data sampling

Principal neurons

Inhibitory feedback 
interneurons

Preprocessors
(today’s focus)

Readout
Core learning 
network

Feedback loop (attractor) 
disabled for present purposes

STDP-based 
synaptic learning



 Core learning network* comprises principal neurons 
or mitral cells (MCs) reciprocally coupled with 
interneurons or granule cells (GCs) in the external 
plexiform layer (EPL). 

 Gist: MC spike time patterns recruit GCs to learn 
feature combinations via asymmetric STDP;                 
GC activity then is deployed as feedback inhibition to 
shape MC spike patterns (attractor).

 Like all networks, for optimal performance, the core 
learning network requires that its sensory input 
patterns adhere to constraints of amplitude,  and 
statistical structure.  

 Learning in the wild requires us to overcome this 
limitation, so that the network can learn and respond 
productively to any input source.

 Readout for classification: assessment of interneuron 
(GC) activation patterns. 

Adapting the algorithm for learning in the wild

*Nabil Imam; Thomas Cleland 



 Inputs from arbitrary sets of sensors in natural environments can be diverse and unpredictable.

 Network parameters can be retuned for different input statistics, but parameter tuning is slow and costly.  

 Solution:  apply signal conditioning so that the network will “just work” on arbitrary datasets without parameter 
retuning.  Success is indicated when a wide diversity of stimuli each recruit similar numbers of interneurons. 

Signal conditioning for learning in the wild

𝑔𝑔𝑝𝑝 ∈ [0, 1]

𝑔𝑔𝑝𝑝 = min min v , 1 ∗
∑ 𝑣𝑣𝑖𝑖

max(𝑣𝑣)
𝑛𝑛𝑛𝑛 𝑛𝑛𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒 𝑖𝑖𝑛𝑛 𝑣𝑣

Goodness of 
preprocessing

Interneuron spike 
count vector across 
samples 

No spike penalty

Interneuron spike 
count similarity

No interneuron spikes

Interneuron recruitment by different 
odors (concentration uncontrolled)

Synthetically-generated 
sensor data (sorted)

Sensors (#0-#15)
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over-recruit interneurons



Signal conditioning for learning in the wild

Sensors (#0-#15)
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 Six odorants presented, each four times, at unknown concentrations          
(overall concentration range: 5 - 1000 ppmv).  

 Different mean response amplitudes, different cross-sensor input statistics.

Interneuron activation/recruitment by different 
odors (concentration uncontrolled)

Raw sensor data;
Sorted by amplitude

Uniform sensor scaling 
(from validation set)

Nonuniform sensor scaling 

Concentration tolerance
(glomerular network)

Heterogenous 
duplication

𝑔𝑔𝑝𝑝 = 0

Four presentations of each odor 
at random concentrations 
(unknown to the algorithm).  
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 All sensor responses sorted by amplitude for illustration. 

Raw sensor data;
Sorted by amplitude

Uniform sensor scaling 
(from validation set)

Nonuniform sensor scaling 

Concentration tolerance
(glomerular network)

Heterogenous 
duplication

Interneuron activation/recruitment by different 
odors (concentration uncontrolled)

𝑔𝑔𝑝𝑝 = 0

Sensors (#0-#15)
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Signal conditioning for learning in the wild

Raw sensor data;
Sorted by amplitude

Uniform sensor scaling 
(from validation set)
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 Based on a validation set of samples, the working range of each sensor is 
scaled to [0,1], such that 1 is a reasonable estimate of the maximum value.  

 This simple first step facilitates the use of highly heterogeneous sensors or 
datasets.  

Nonuniform sensor scaling 

Concentration tolerance
(glomerular network)

Heterogenous 
duplication

Interneuron activation/recruitment by different 
odors (concentration uncontrolled)

𝑔𝑔𝑝𝑝 = 0

Sensors (#0-#15)
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Signal conditioning for learning in the wild

Raw sensor data;
Sorted by amplitude

Uniform sensor scaling 
(from validation set)
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 Scaling values are further modulated by a equidimensional vector drawn 
from a uniform distribution. 

 This is useful for subsequent preprocessing if the training set is small.  

Nonuniform sensor scaling 

Concentration tolerance
(glomerular network)

Heterogenous 
duplication

Interneuron activation/recruitment by different 
odors (concentration uncontrolled)

𝑔𝑔𝑝𝑝 = 0

Sensors (#0-#15)
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Signal conditioning for learning in the wild

Raw sensor data;
Sorted by amplitude

Uniform sensor scaling 
(from validation set) After 

NTCE2
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Nonuniform sensor scaling 

Concentration tolerance
(glomerular network)

Interneuron activation/recruitment by different 
odors (concentration uncontrolled)

See also:  Imam and Cleland (2012)

 Unsupervised concentration tolerance implemented in a biomimetic network.  

 An intercolumnar network integrates net input across columns and delivers it 
uniformly to all columns as inhibition. 

Heterogenous 
duplication

𝑔𝑔𝑝𝑝 = 0.56

Sensors (#0-#15)
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Raw sensor data;
Sorted by amplitude

Uniform sensor scaling 
(from validation set)
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Nonuniform sensor scaling 

Interneuron activation/recruitment by different 
odors (concentration uncontrolled)

28 %  improvement

Random connections with heterogenous weights

Each input 
sensor

ET cells Multiple 
“sister” 
principal 
neurons
(per sensor)

Concentration tolerance
(glomerular network)

Heterogenous 
duplication

𝑔𝑔𝑝𝑝 = 0.84

Consistent input 
statistics generated 
from diverse inputs.  

Sensors (#0-#15)
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Raw sensor data;
Sorted by amplitude

Uniform sensor scaling 
(from validation set)
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Nonuniform sensor scaling 

28 %  improvement

Random connections with heterogenous weights

Each input 
sensor

ET cells Multiple 
“sister” 
principal 
neurons
(per sensor)

Concentration tolerance
(glomerular network)

Heterogenous 
duplication

𝑔𝑔𝑝𝑝 = 0.84

Unsorted to 
show diversity of 
sensor response 
profiles.

Sensors (#0-#15 x 5 duplicates)

Consistent input 
statistics generated 
from diverse inputs.  

16 sensors x5 
 80 principal 
neurons

Sensors (#0-#15)



Balanced network learns diverse inputs via online learning

Group 1:

Ammonia
Group 2:

Acetaldehyde
Group 3:
Acetone

Group 4:
Ethylene

Group 5:
Ethanol

Group 6:
Toluene

 Train and test using UCSD gas sensor drift dataset:

 Ten “batches” of data taken over three years of sensor drift

 Within each batch, train (few-shot) on each of the 5-6 gas 
types present, sequentially, irrespective of concentrations. 

 After training on each gas type, using the complete test set, 
measure classification performance from among all gases 
trained so far, or “none of the above”.

 Feedback loop is here omitted, so classification performance 
is measured directly from interneurons (“EPLff network”)

445
12441586

161 197

2300

3613

294 470

3600

0

1000

2000

3000

4000



0

20

40

60

80

100

120

Ammonia Acetaldehyde Acetone Ethylene Ethanol Toluene

Performance on batch 1 of drift data set

EPLff 1shot EPLff 10 shot Multi-layer perceptron (1 shot) Multi-layer perceptron (10 shot)

The networks were trained 
on odorants sequentially, 
in the order depicted.

EPLffdoes not suffer from 
catastrophic forgetting. 

Online learning 
performance in a simple 
multilayer perceptron 
(MLP) is shown for 
illustration.  

Online learning performance

MLP
MLP

MLP MLP

MLP
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Ammonia Acetaldehyde Acetone Ethylene Ethanol Toluene

Performance on batch 1 of drift data set

EPLff 1shot EPLff 10 shot Multi-layer perceptron (1 shot) Multi-layer perceptron (10 shot)

The networks were trained 
on odorants sequentially, 
in the order depicted.

EPLff does not suffer from 
catastrophic forgetting. 

Online learning 
performance in a simple 
multilayer perceptron 
(MLP) is shown for 
illustration.  

Online learning performance

MLP
MLP

MLP MLP

MLPEPLffEPLff EPLff EPLff EPLff EPLff



Batch 1  (Months 1-2) Batch 7  (Month 21)

1. Sensor decay reduces 
SNR of inputs.

2. Sensor drift renders 
prior learning obsolete.

The problem of sensor drift
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Batch 1  (Months 1-2) Batch 7  (Month 21)

1. Sensor decay reduces 
SNR of inputs.

2. Sensor drift renders 
prior learning obsolete.

The problem of sensor drift

Input preprocessing series 
recovers well-behaved signals 
even from degraded sensors
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Batch 1 Batch 
2

Batch 
3

Batch 
4

Batch 
5

Batch 
6

Batch 
7

Batch 
8

Batch 
9

Batch 
10

Online learning of batches 1-10

EPLff(1shot) EPLff(10shot) MLP(1 shot) MLP(10shot)

TestRapidly 
TrainResetTest 

failure
Passage 
of timeTestRapidly  

Train

Rapid online learning as a solution for sensor drift

 Task:  Learn all odors in series within each 
batch.  Test classification of all odors, all 
concentrations, including “none of the above”.  

 Sensor drift solution:  if sensors have drifted, 
rapidly retrain network (few-shot learning of 
known odors). 

 Does not require hyperparameter re- tuning 

 No need to wait for entire train set availability 
(model can be updated later too).

 Classifier confidence. “None of the above” 
responses to known trained classes can be used 
to determine the onset of reset.

Batch 7Batch 1



Summary:  Learning in the wild
 Our SNN algorithm supports rapid, few-shot, online learning

and robust classification under noise.  

 We present a series of signal conditioning preprocessors (some trivial, some 
novel) that enable this algorithm to usefully process poorly-behaved datasets 
without hyper-parameter tuning.  
 Signals with dissimilar sensor statistical distributions

 Signals presented across ranges of intensity (concentration)

 Signals from low-quality or degraded sensors

 Heterogeneity in the network is useful at multiple stages
 Non-uniform sensor scaling preprocessor.

 Heterogeneous duplication of input streams in the preprocessor network enables 
statistical regularization.

 Heterogeneity in thresholds (interneurons, sister MCs) improves algorithm performance 
(not shown).

 Rapid learning (using EPLff) with degraded sensors resolves the problem of 
sensor drift.
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Rapid online learning as a solution for sensor drift

Accuracy

#features

#samples
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Yan et al.
17

EPLff

Accuracy 92.37 94.64
#features 128 16
#samples 535 393

92.37 94.64

128
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Batch 1-10 : Test performance

Accuracy #features #samples

 All previous approaches non-online. 

Batch 10: Highly contaminated sensors

73.28 74.11

90.46
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Yan et al. 17 EPLff (1 shot) EPLff (10
shot)

Test performance

Accuracy

EPLff provide concentration estimation. 
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