

Attractor Dynamics and Embodiment of Neural Computing

Yulia Sandamirskaya

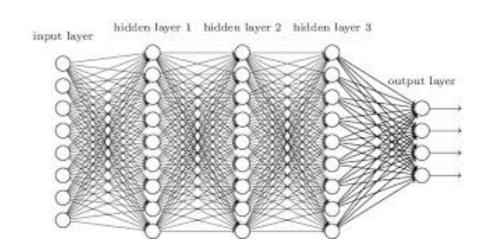
Institute of Neuroinformatics (INI)
University of Zurich and ETH Zurich
Switzerland

What do brains "compute"?

- biological neural systems evolved to generate movement
- goal-directed movement requires
 - perception (state estimation)
 - calibration (internal and external alignment)
 - online adaptation (control)
 - → biological neural networks are intelligent controllers

What is required for intelligent control?

- → working memory
 - stabilisation of neuronal states
- decision making
 - selection among alternatives
 - "attention"



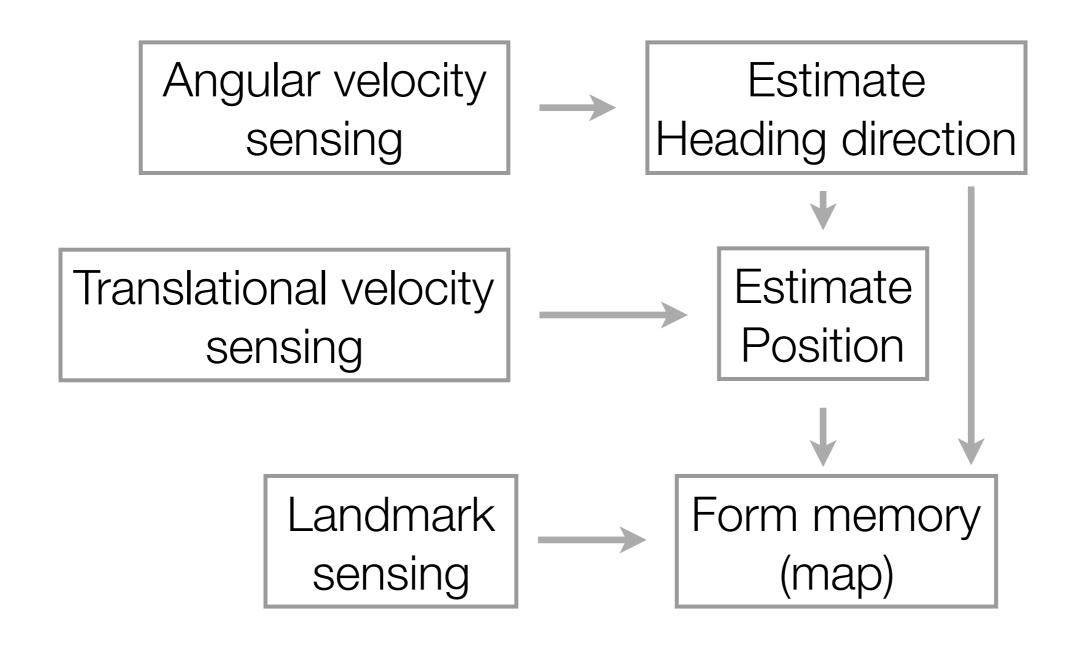
Not something artificial neural networks solve today!

What is required to enable "purely" neuronal computing / control?

- → structure (autonomy)
- → interfaces to sensors and motors (embodiment)

Towards neuromorphic SLAM

Simultaneous localisation and mapping



Neuromorphic hardware

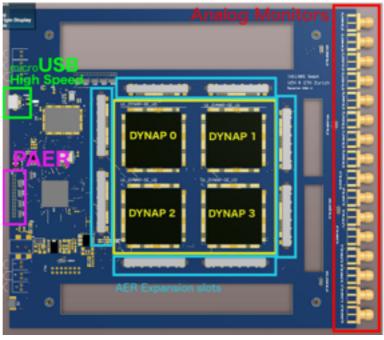
ROLLS



(Qiao, Indiveri, 2015)

- mixed-signal circuitry
- 256 artificial neurons
- 256 x 256 plastic synapse circuits
- 180nm process
- ultra-low power

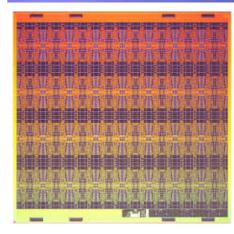
DYNAP



(Qiao, Indiveri, 2018)

- mixed-signal circuitry
- 4 x 1024 artificial neurons
- 64 x 1024 synapses
- 180nm process
- ultra-low power
- scalable

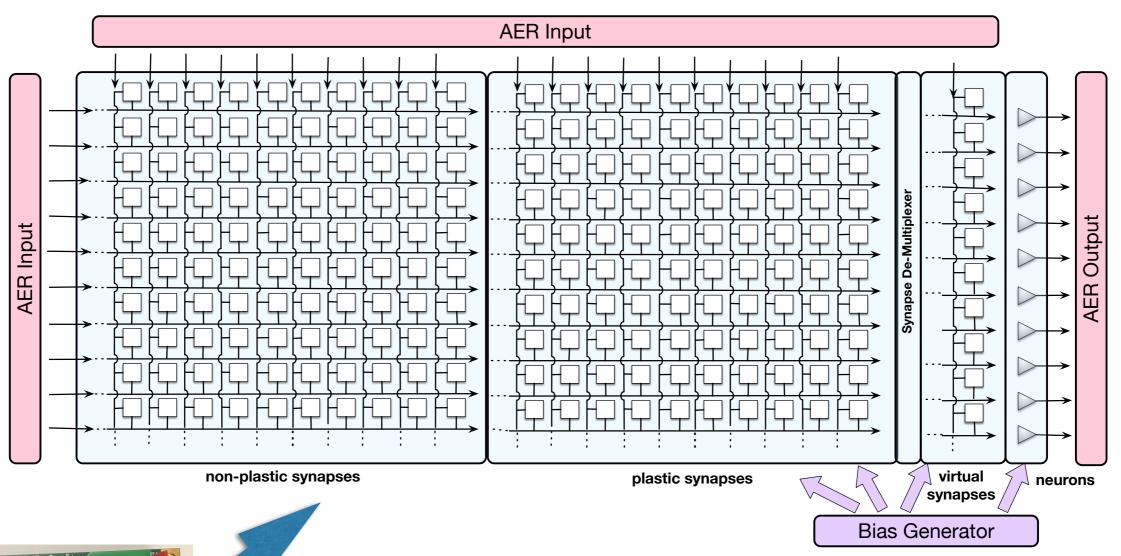
Loihi



(Davies, 2018)

- fully digital circuitry
- 130,000 artificial neurons
- 130 million synapses
- programmable learning engine
- 14nm process
- low power and scalable

Reconfigurable OnLine Learning Spiking (ROLLS)

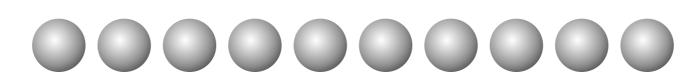


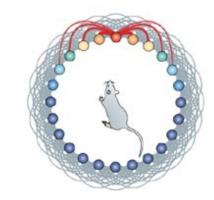
TO THE PARTY OF TH

- analog circuits for neurons and synapses
- digital communication of spikes

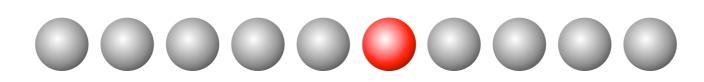
"programming" = wiring-up and setting parameters

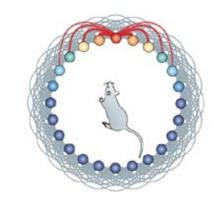
Heading Direction



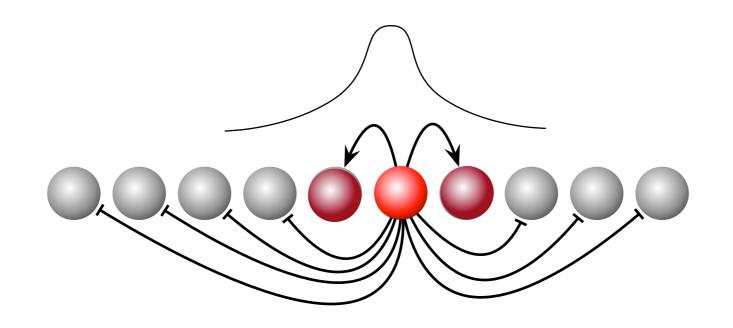


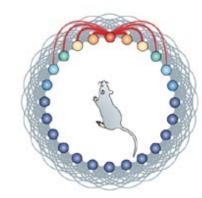
Heading Direction





Heading Direction





- →(soft) "winner take all"
- → dynamic neural field
 - Population activity dynamics:

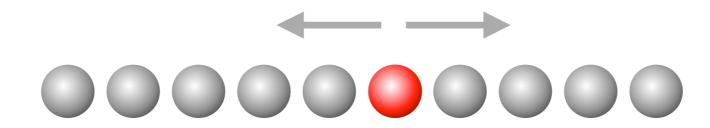
$$\tau \dot{u}(x,t) = -u(x,t) + h + \int f(u(x',t))\omega(x-x')dx' + I(x,t)$$

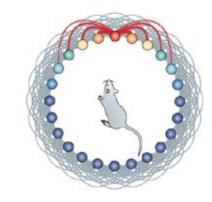
Amari, S. Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 1977, 27, 77-87

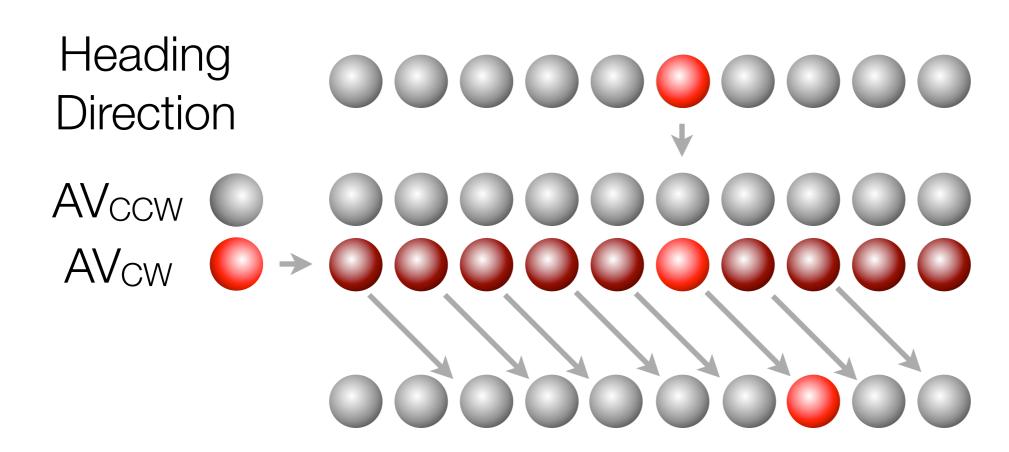
Wilson, H. R. & Cowan, J. D. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, **1973**, 13, 55-80

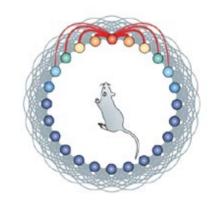
Gerstner, Grossberg, Ermentrout, Coombes, Schöner&Spencer, 2015, Erlhagen...

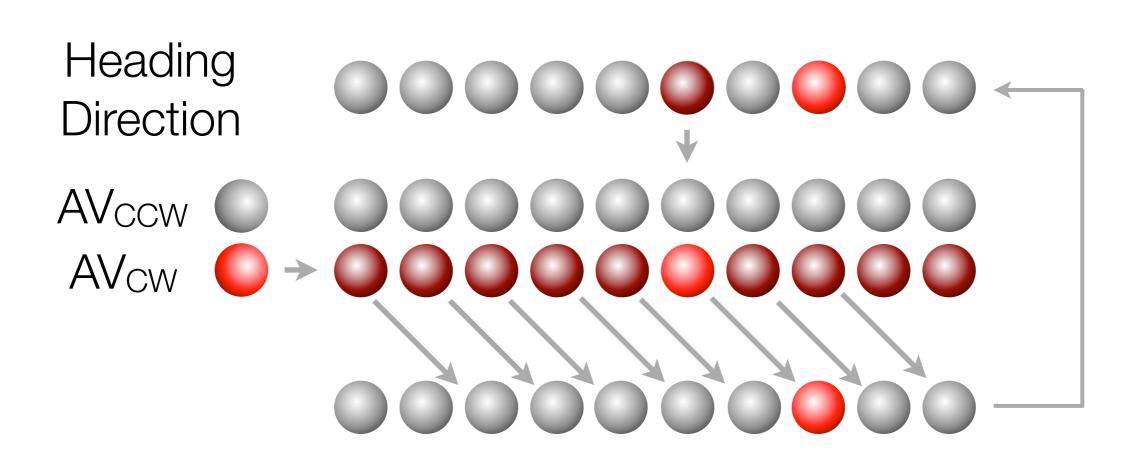
Heading Direction

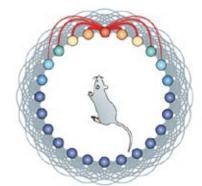


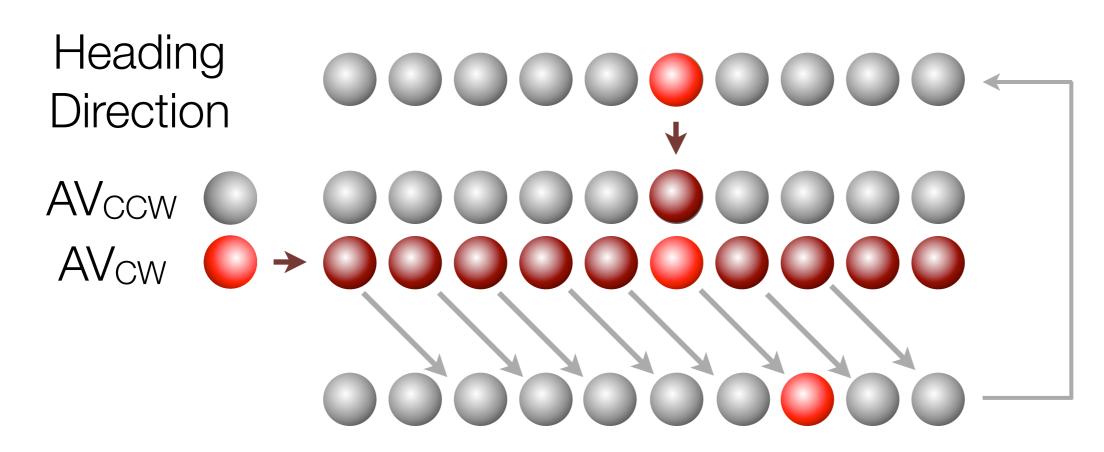


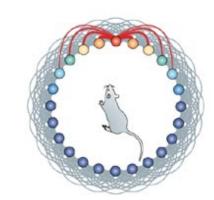






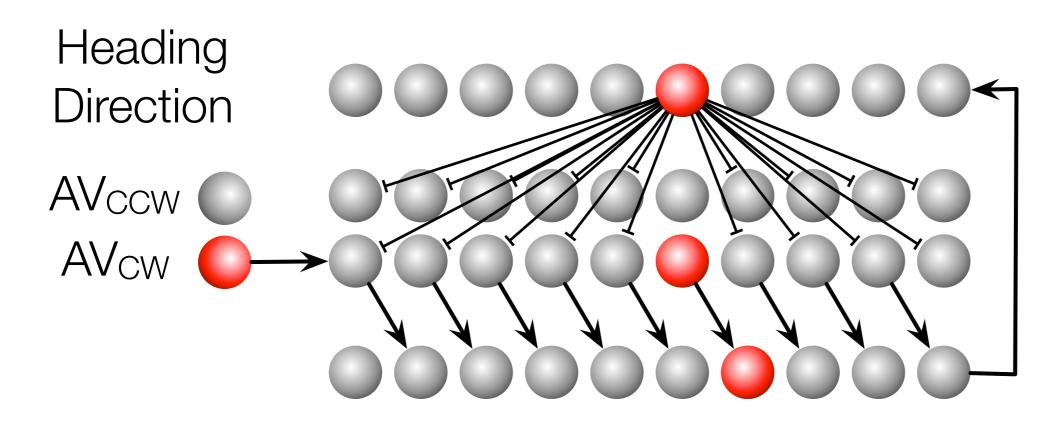


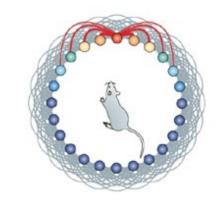




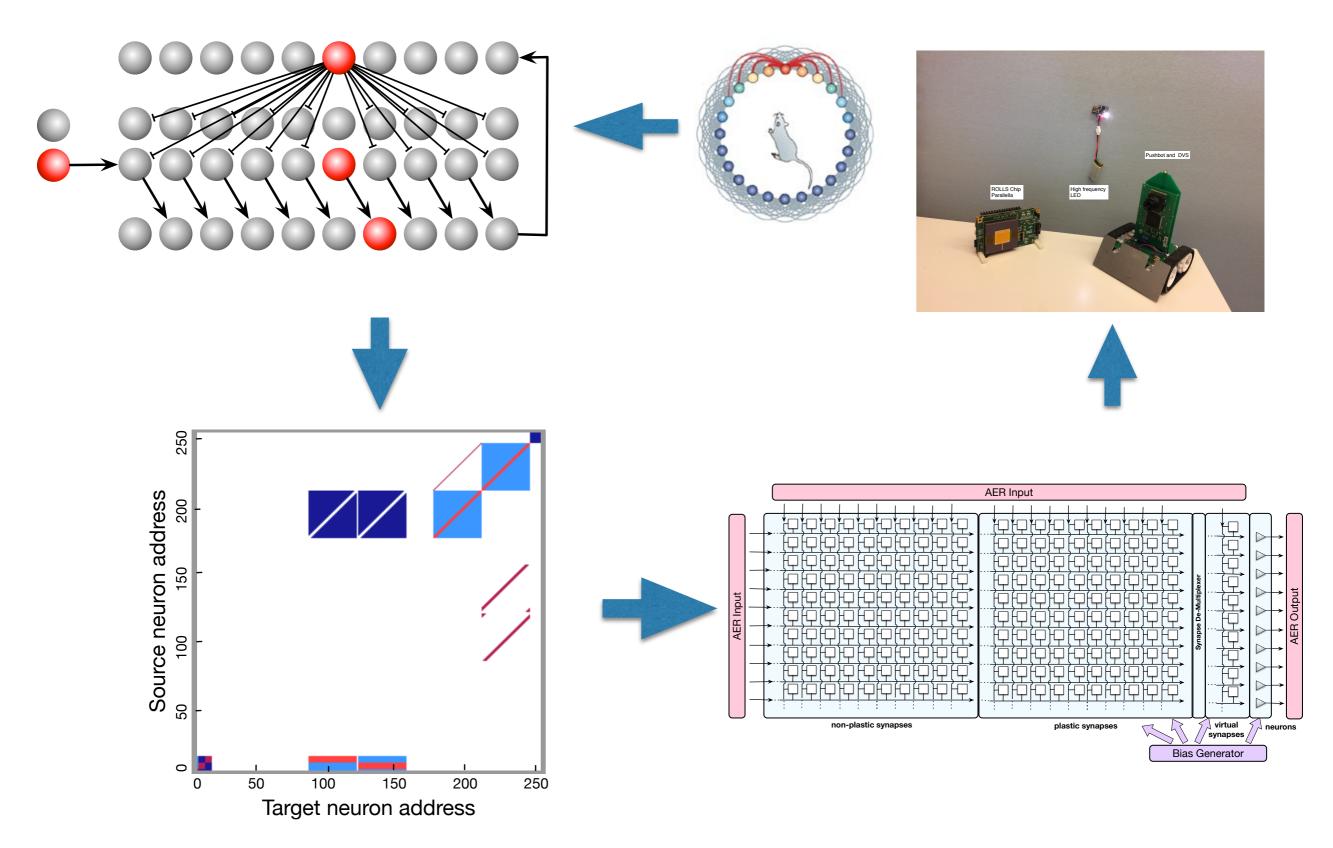
Analogue

- missmatch
- variability
- low precision





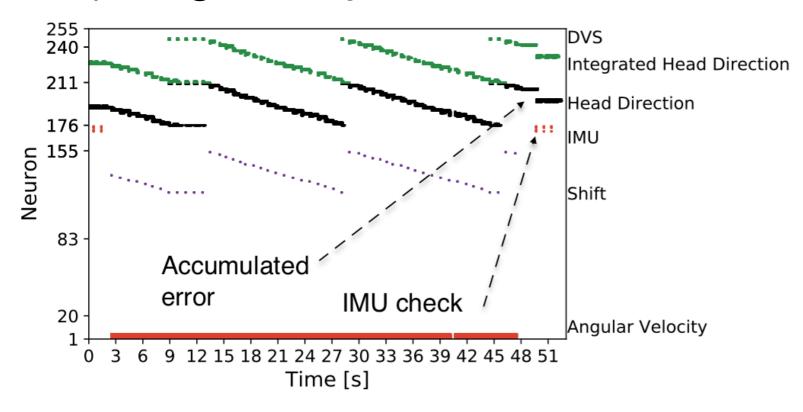
→ More robust connectivity: desinhibition



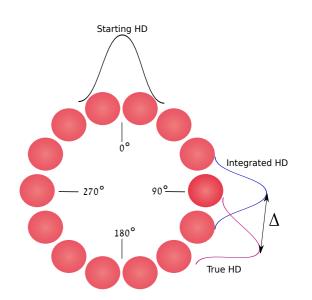
Kreiser, R.; Cartiglia, M. & Sandamirskaya, Y. A Neuromorphic approach to path integration: a head direction spiking neural network with visually-driven reset. IEEE Symposium for Circuits and Systems, ISCAS, **2018**

Heading direction estimation: hardware results

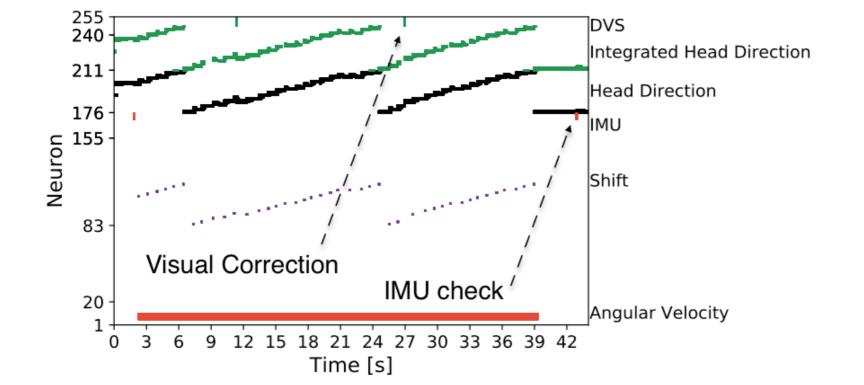
Spiking activity on ROLLS

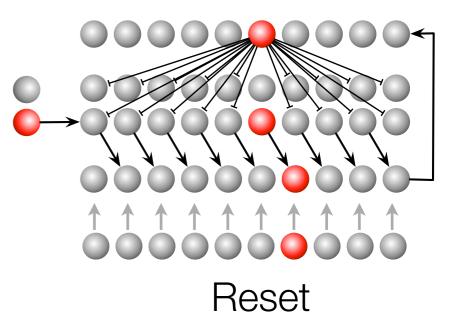


Error accumulation

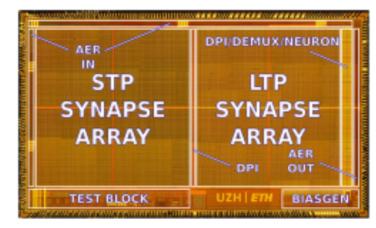


Correction using vision

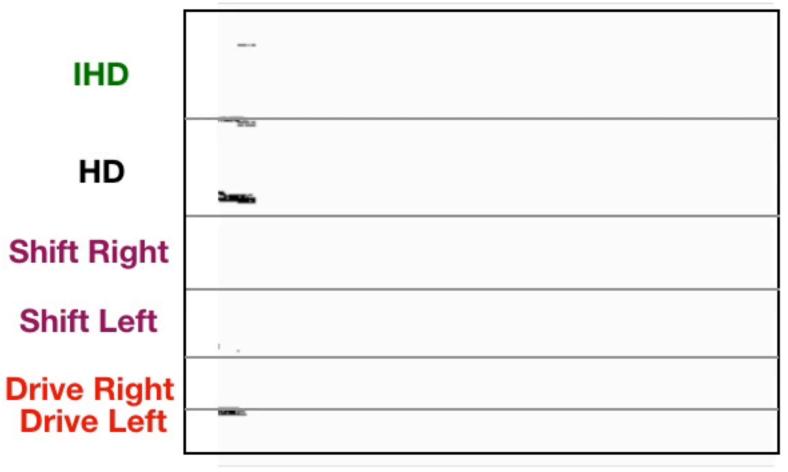




Real-time activity on the ROLLS chip



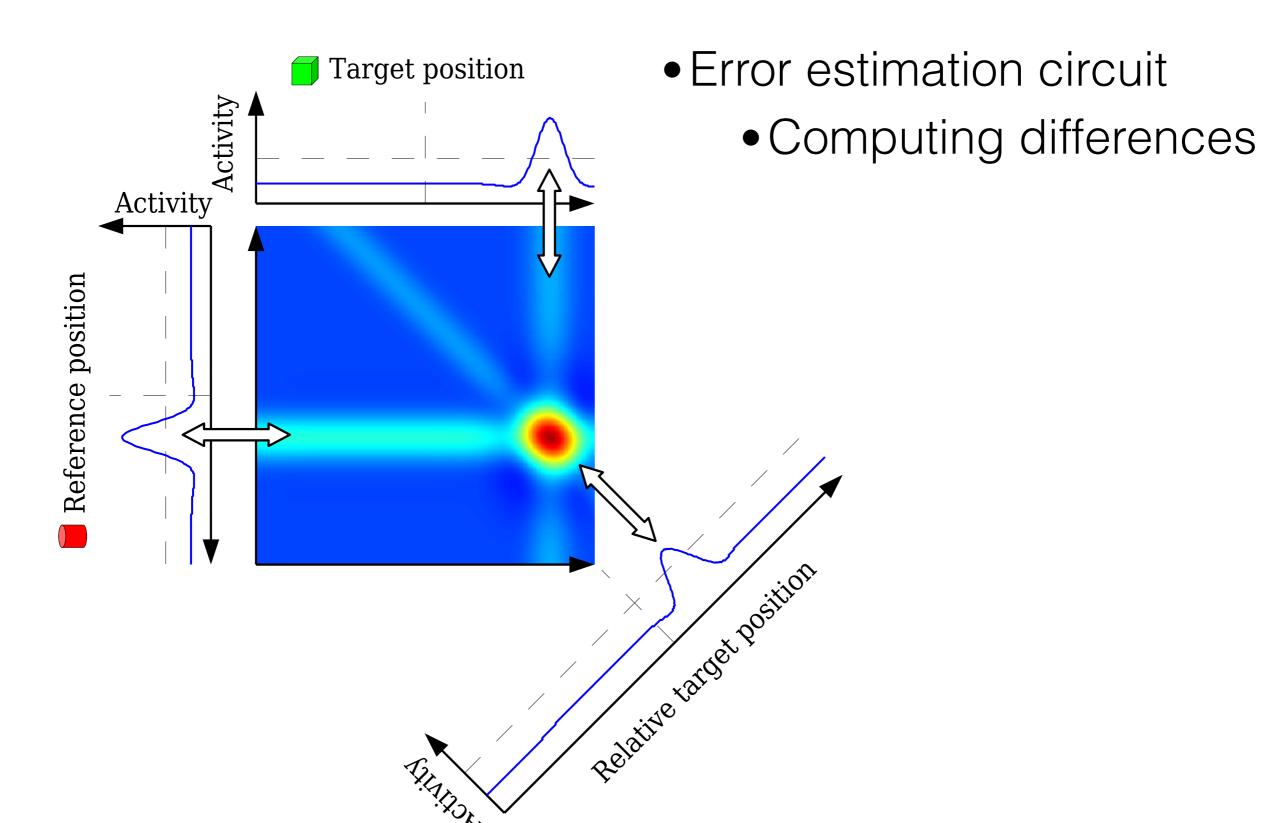
Qiao, Ning, et al, Frontiers in neuroscience, 2015



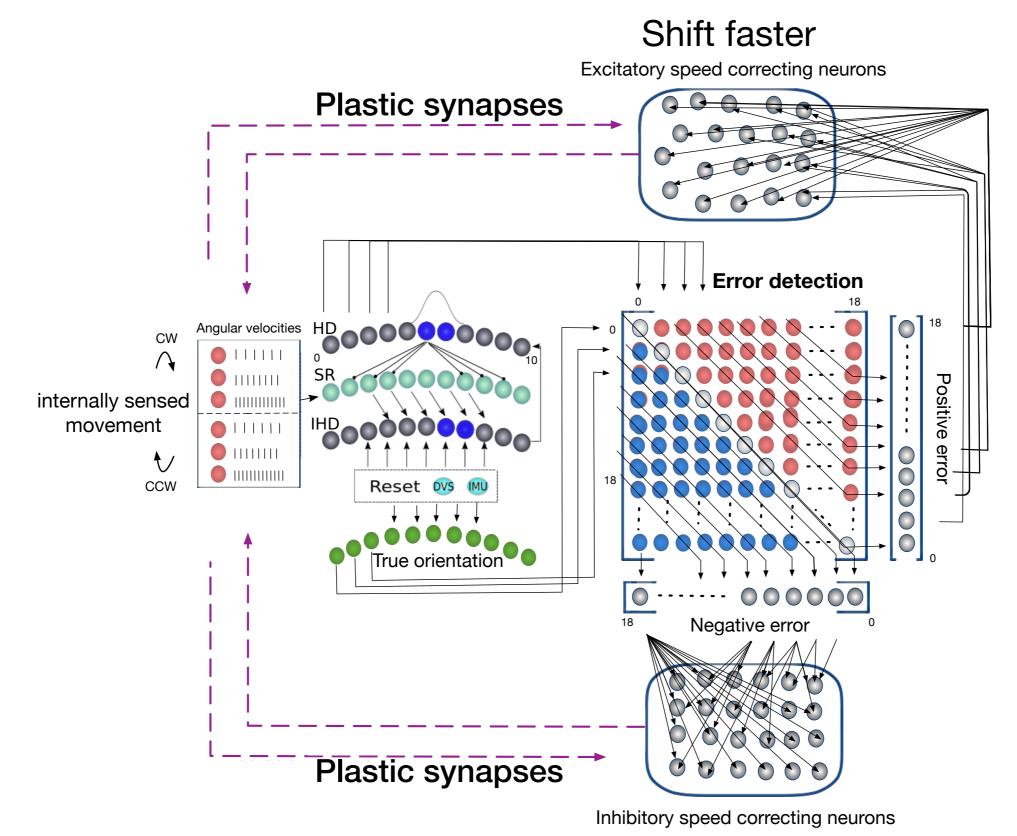
time

"Loop closure" and calibration

How fast does the activity bump need to move?



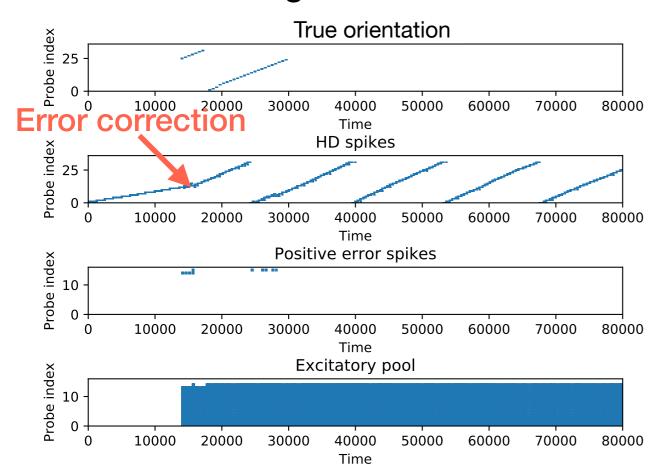
"Loop closure" and calibration



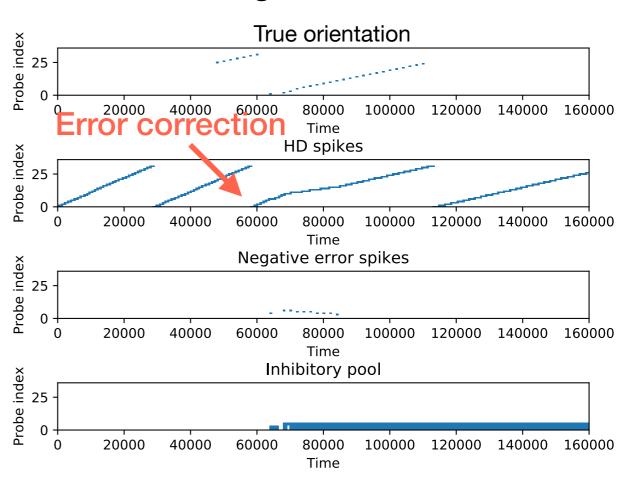
Shift slower

Matching activity shifting velocity to real velocity

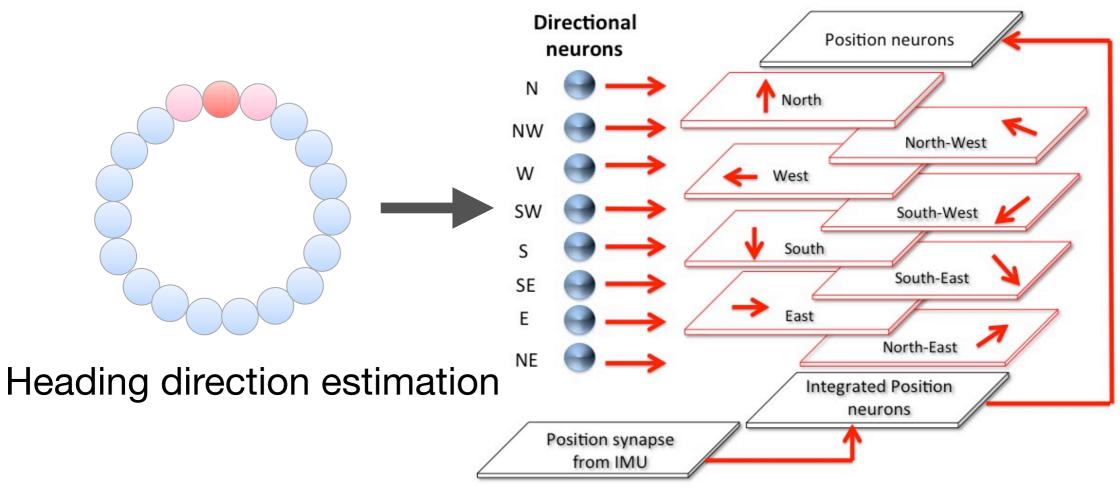
Learning to shift faster



Learning to shift slower

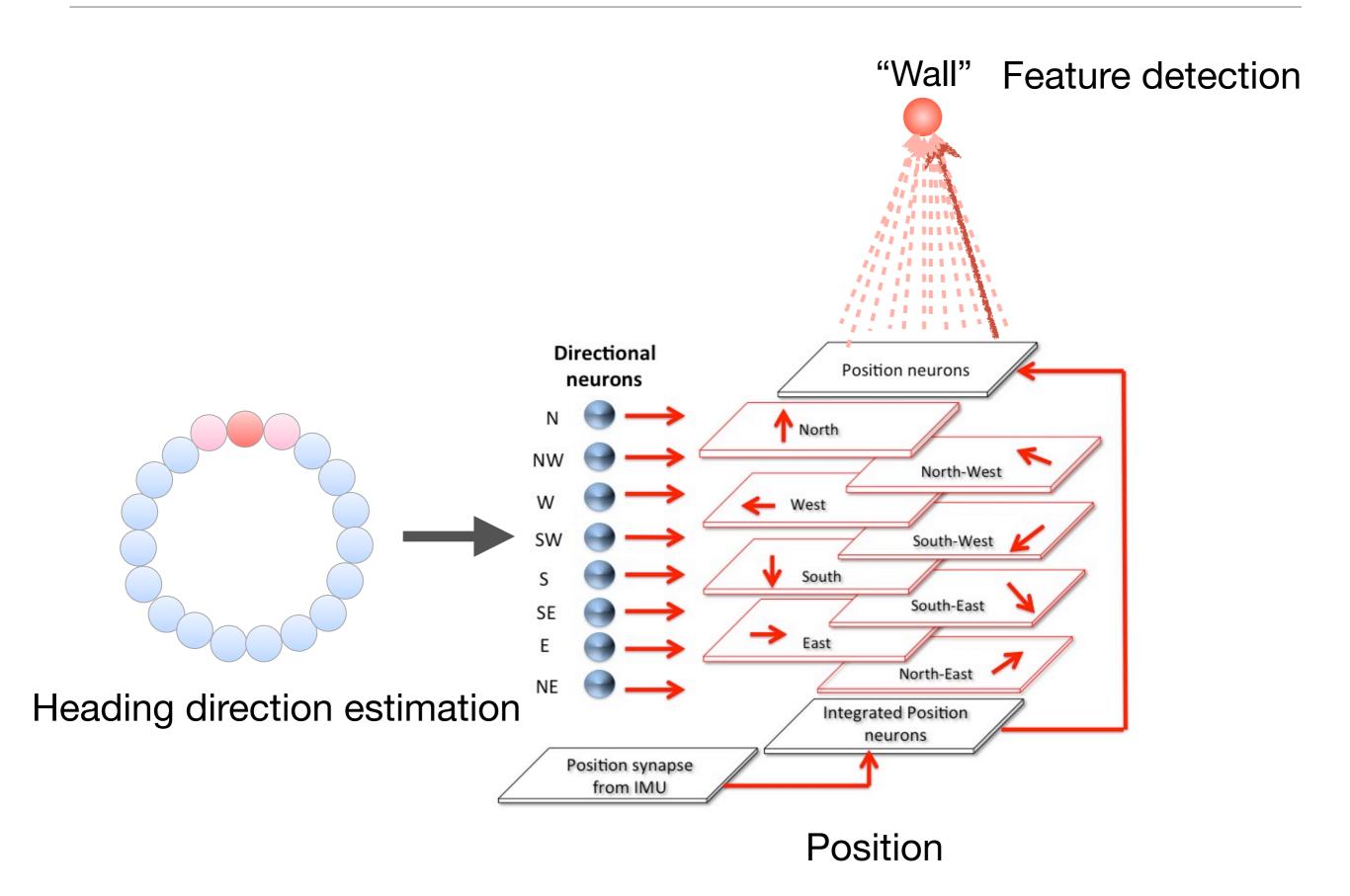


Position estimation

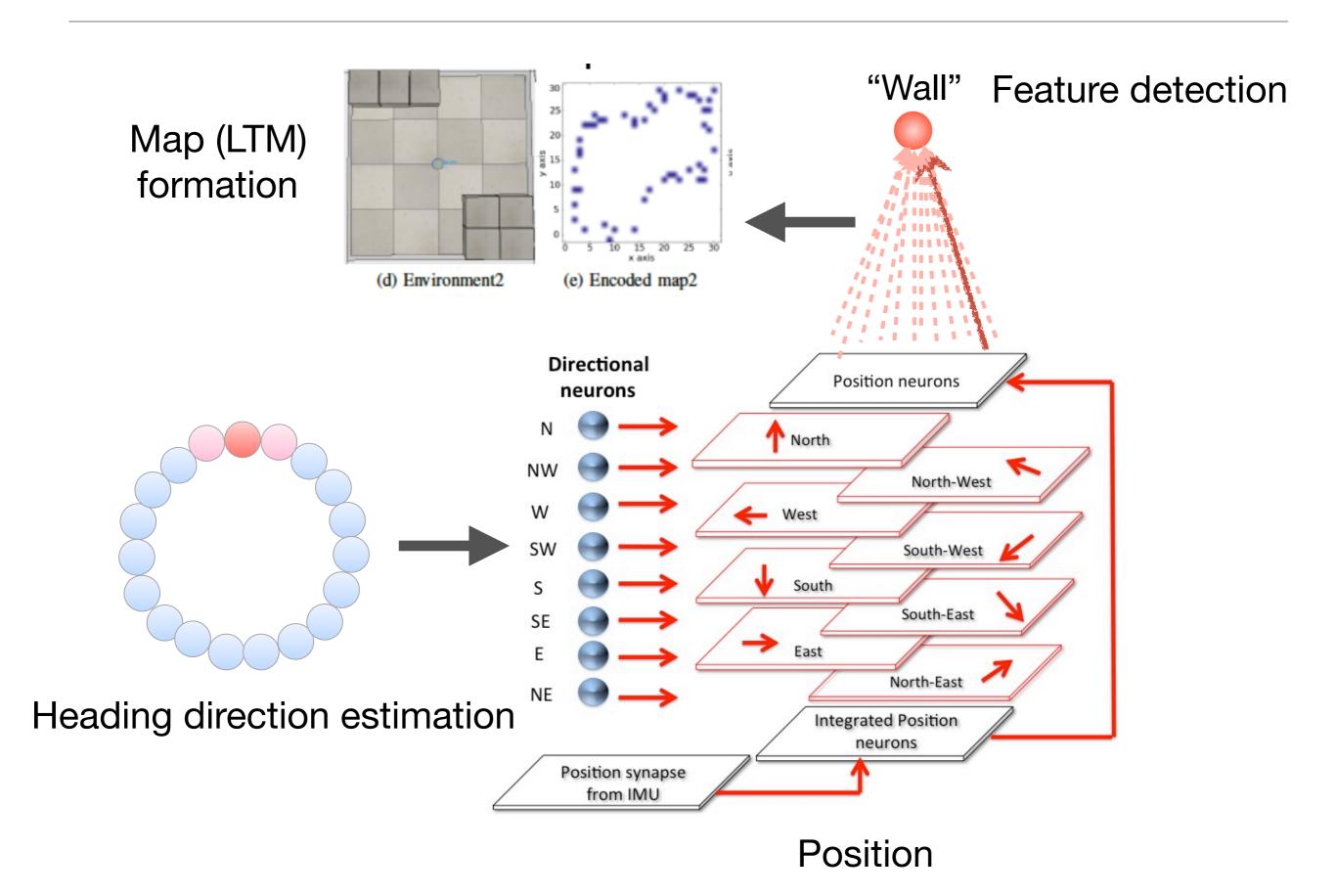


Position estimation network

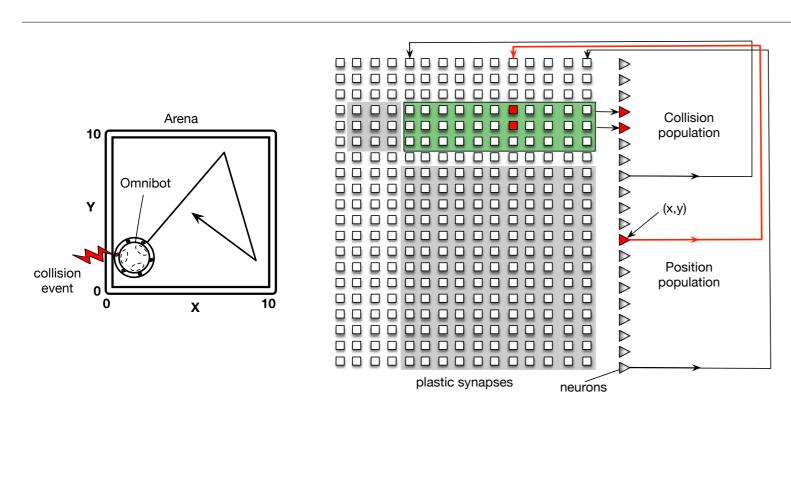
Position estimation

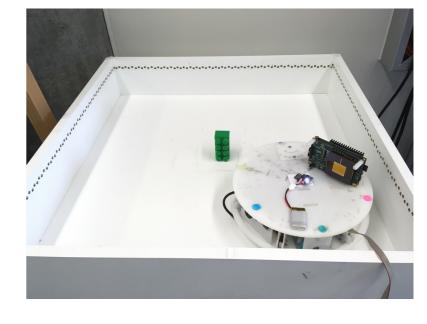


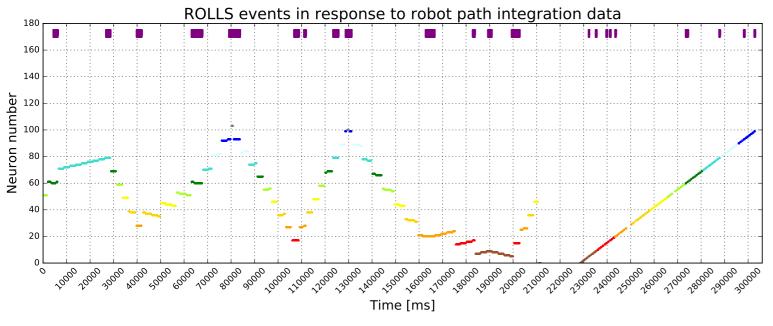
Map formation

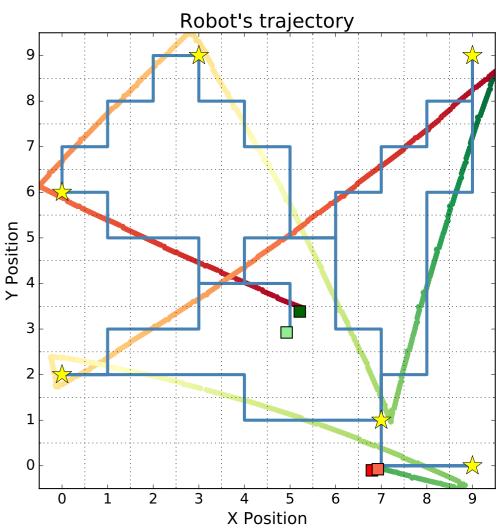


Map formation on the ROLLS chip



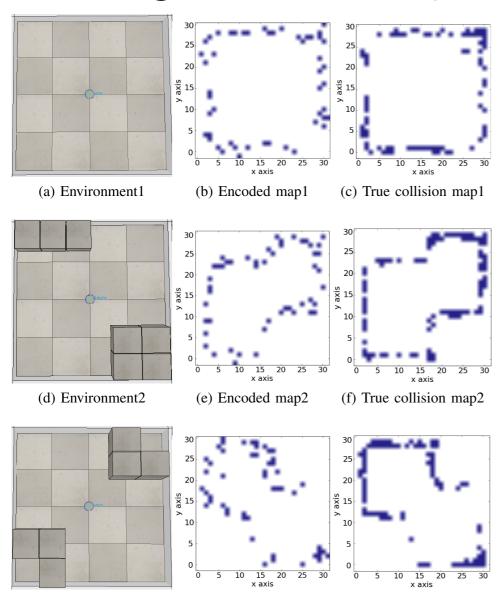




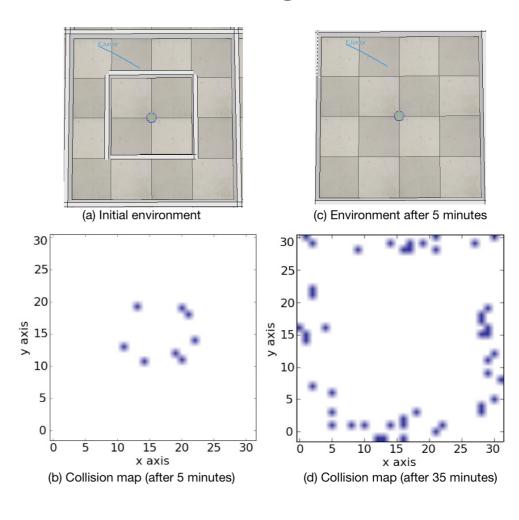


Map formation: Path integration in 2D

Learning different maps



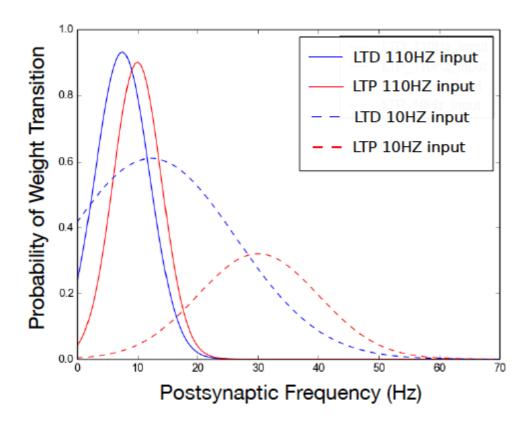
Unlearning a map



Kreiser, R.; Pienroj, P.; Renner, A. & Sandamirskaya, Y. Pose Estimation and Map Formation with Spiking Neural Networks: towards Neuromorphic SLAM. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, **2018**

How can we unlearn something?

• LTD and LTP depends on both pre- and postsynaptic frequencies

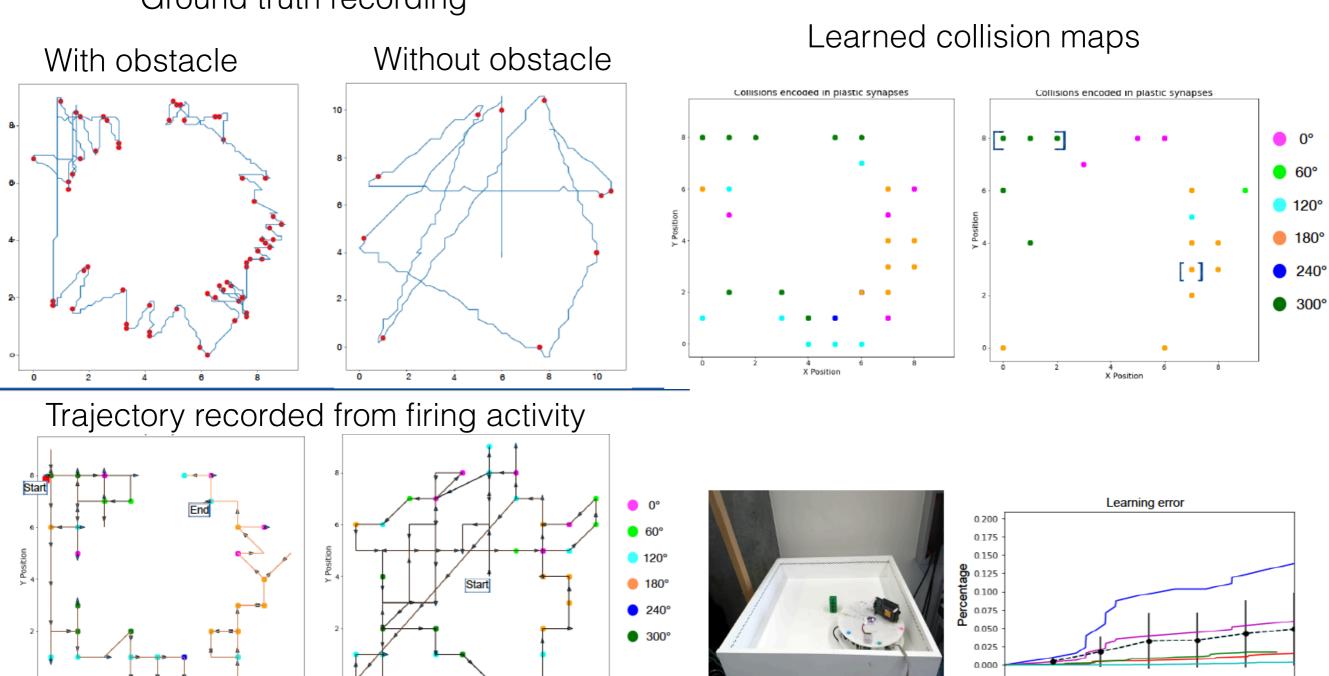


Stochastic weight update
$$w_i = w_i + \Delta * w^+ \text{ if } V_{mem}(t_{pre}) > \theta_{mem} \text{ and } \theta_1 < Ca(t_{pre}) < \theta_3$$
 $w_i = w_i - \Delta * w^- \text{ if } V_{mem}(t_{pre}) < \theta_{mem} \text{ and } \theta_1 < Ca(t_{pre}) < \theta_2$ Drift
$$\frac{d}{dt}w_i = +C_{drift} \text{ if } w_i > \theta_w \text{ and } w_i < w_{max}$$

$$\frac{d}{dt}w_i = -C_{drift} \text{ if } w_i < \theta_w \text{ and } w_i > w_{min}$$
 Binary weight of the synapse
$$J_i = J_{max}f(w_i, q_J)$$

Unlearning false collisions on chip

Ground truth recording

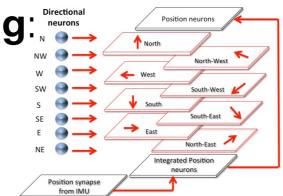


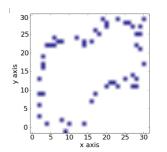
Robot arena with obstacle

Time [ms]

NICE?

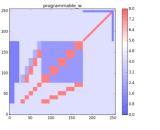
- → Simultaneous localisation and mapping: path integration, learning a map
 - state estimation, building representations

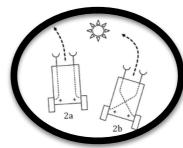




Kreiser et al 2018a, b Blatter et al, ISCAS, under rev;

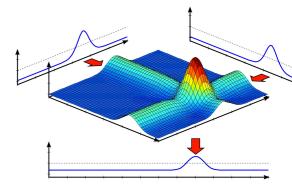
- **→** Braintenberg vehicle, sequences
 - attractors in a sensory-motor loop



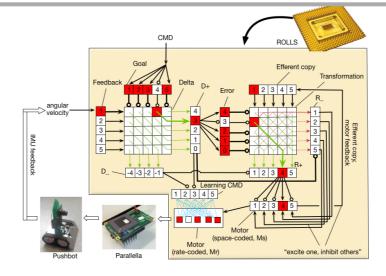


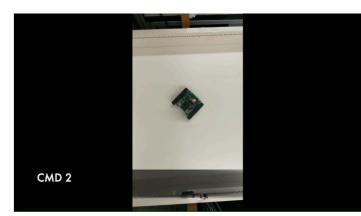
Milde et al 2017a,b; Kreiser et al 2018; Blum et al 2017

- **→ Reference frame** transformations
 - key for linking modalities



- Adaptive motor control
 - key element for adaptive behavior





Conclusions

- → lots of structure is needed to control behavior with neurons
 - represent state with neuronal populations ("place code")
 - stabilise states and decision with recurrent connections (WTA)
 - disinhibition for robustness
 - adaptive couplings between sensed quantities and states
 - error estimation and correction
- → learning can then be very simple
 - one-shot
 - binary weight
- → object representation as a map-formation problem, not a (just) pattern recognition

Thanks!

- Marie Curie IF
- FET PROACT
- Ambizione
- Project coordination
- Forschungskredit

Sebastian Glatz

Matteo Cartiglia

Nicolas Känzig

Panin Pienroj

Paul Joseph

Jozef Bucko

Nuria Armengol

Balduim Dettling

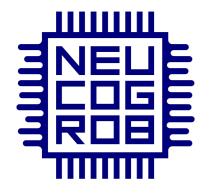
David Niederberger

Herman Blum

Lin Jin

• GRC Grant

Junior Group fellowship



PhD Students

Julien Martel

Alpha Renner*

Raphaela Kreiser*

Claudius Strub*

Moritz Milder

Dora Sumislawska

MSc, BSc theses

Gwendolyn English

Eloy Barrero

Llewyn Salt

Mathis Richter

Tobias Storck

Christian Bell

Claudia Rudolph

Jianlin Lu

Ammar Bitar

Jonathan Müller

Kay Müller

Sebastian Glatz

Valery Metry

Alpha Renner

David Niederberger

Raphaela Kreiser

Semester theses

Alexander Dietmüller Héctor Vazquez

Mario Blatter

Frédéric Debraine

Lukas Blässig

Lennard de Graf

Michel Frising

Zahra Farsijani

Michael Purcell

Viviane Yang

Davide Plozza

Damiano Steger

<u>Collaborators</u>

Gregor Schöner

Giacomo Indiveri

Florentin Wörgötter

J.-C. Quinton

John Spencer

Piotr Dudek

Fatih Yanik

Jörg Conradt

Christian Faubel

Tobi Delbruck

John Lipinski

Richard Hahnloser

Matt Luciw

Jürgen Schmidhuber

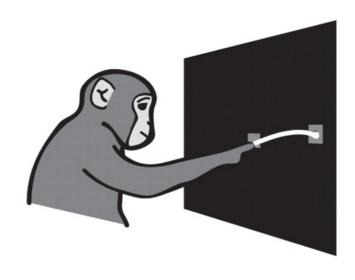
Helge Ritter

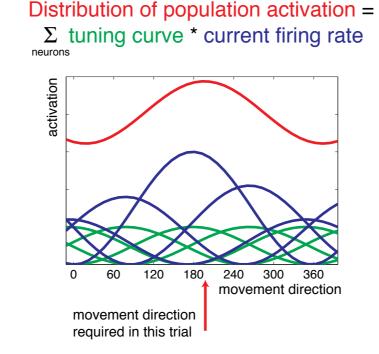
Hajar Azgari

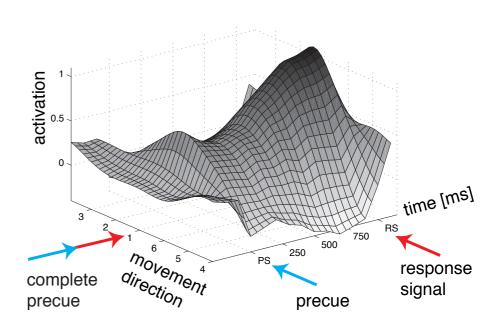
Abhishek Banerjee

Elementary module of neuronal control

"Reaching" task







→ Population activity dynamics:

$$\tau \dot{u}(x,t) = -u(x,t) + h + \int f(u(x',t))\omega(x-x')dx' + I(x,t)$$

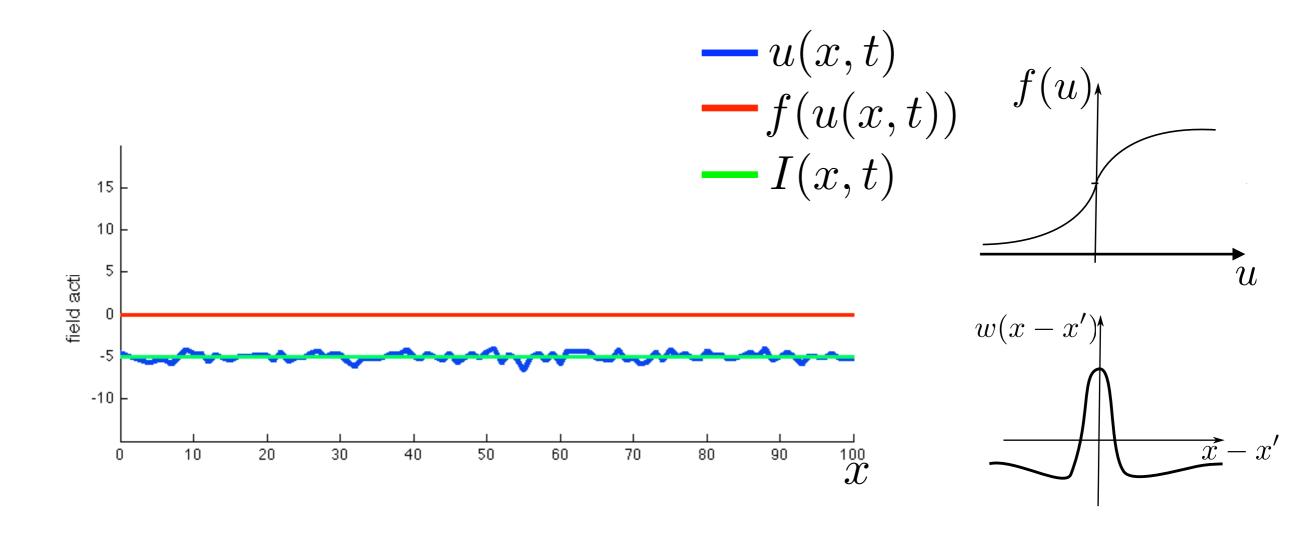
Amari, S. **Dynamics of pattern formation in lateral-inhibition type neural fields**. Biological Cybernetics, **1977**, 27, 77-87

Wilson, H. R. & Cowan, J. D. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, **1973**, 13, 55-80

Gerstner, Grossberg, Ermentrout, Coombes, Schöner&Spencer, Erlhagen...

Neural dynamics

Dynamic Neural Field, WTA, bump-attractor networks

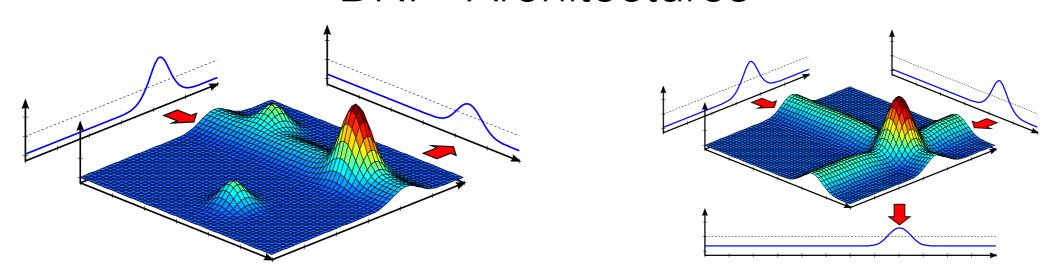


$$\tau \dot{u}(x,t) = -u(x,t) + h + \int f(u(x',t))\omega(x-x')dx' + I(x,t)$$

"Cognitive" properties of Neural Fields

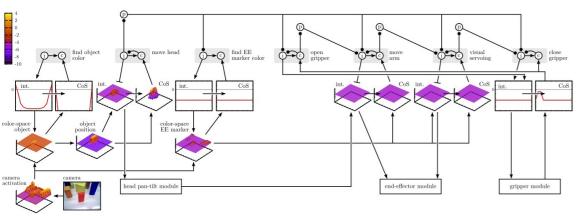
- "Detection" and "forgetting" instabilities
 - continuous time → discrete "events"
- Localised "bumps"
 - continuous space → discrete "categories"
- "Selection" instability
 - stabilisation of selection decisions
- Sustained activation
 - modelling working memory

→ DNF "Architectures"



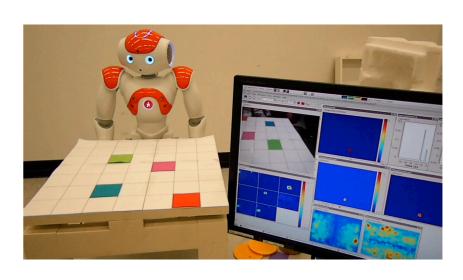
Embodied DNF architectures

Action selection

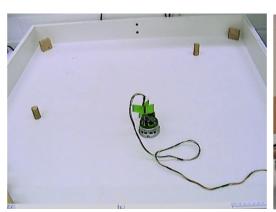


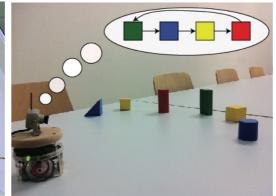
Planning & acting

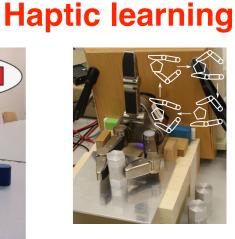
Learning to look

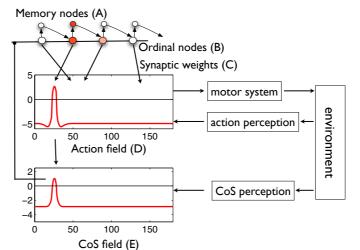


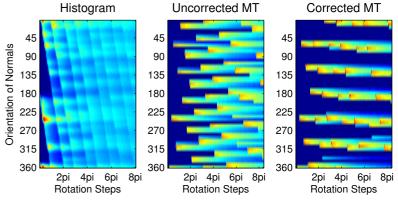
Sequence learning





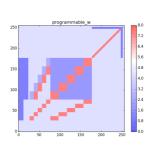


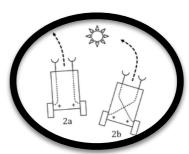




Why are these architectures fundamental?

- **→** Braintenberg vehicle, sequences
 - attractors in a sensory-motor loop

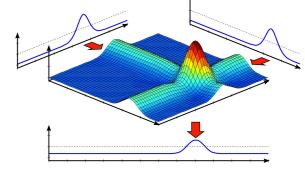




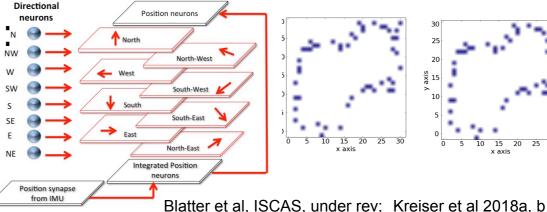
Milde et al 2017a,b; Kreiser et al 2018

- **→ Reference frame** transformations
 - key for linking modalities

Blum et al 2017

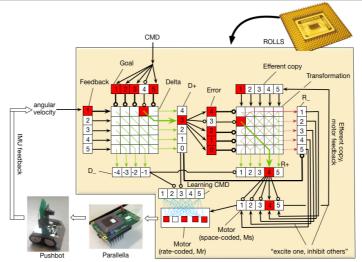


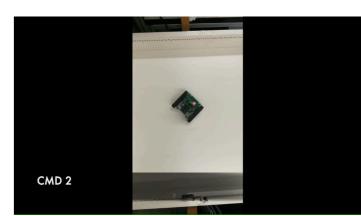
- → Simultaneous localisation and mapping: path integration, learning a map
 - state estimation, building representations



Adaptive motor control

 key element for adaptive behavior





Reference frames transformation on chip

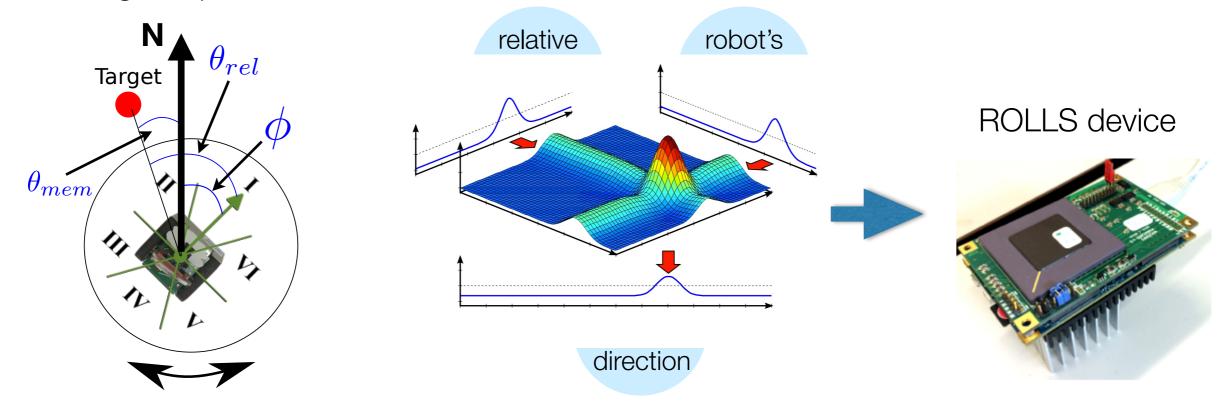
View-based target representation:

target in view

target lost from view

Allocentric target representation:

Neural ref. frame transformation:



Blum, H.; Dietmüller, A.; Milde, M.; Conradt, J.; Indiveri, G. & Sandamirskaya, Y. A neuromorphic controller for a robotic vehicle equipped with a dynamic vision sensor. Robotics: Science and Systems (RSS), **2017**

What will be the bottleneck for purely neuronal control?

- → interfaces
 - sensors
 - neuromorphic SLAM as an approach to perception

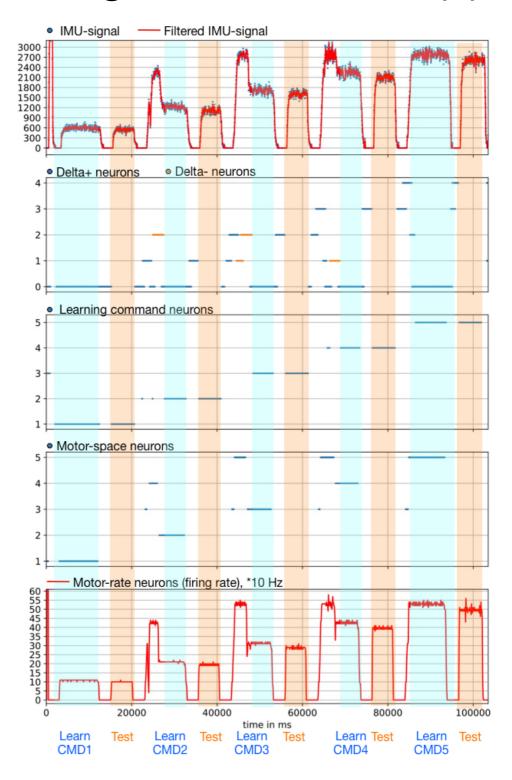
- motor system
 - adaptive control

Motor control: results

Controller

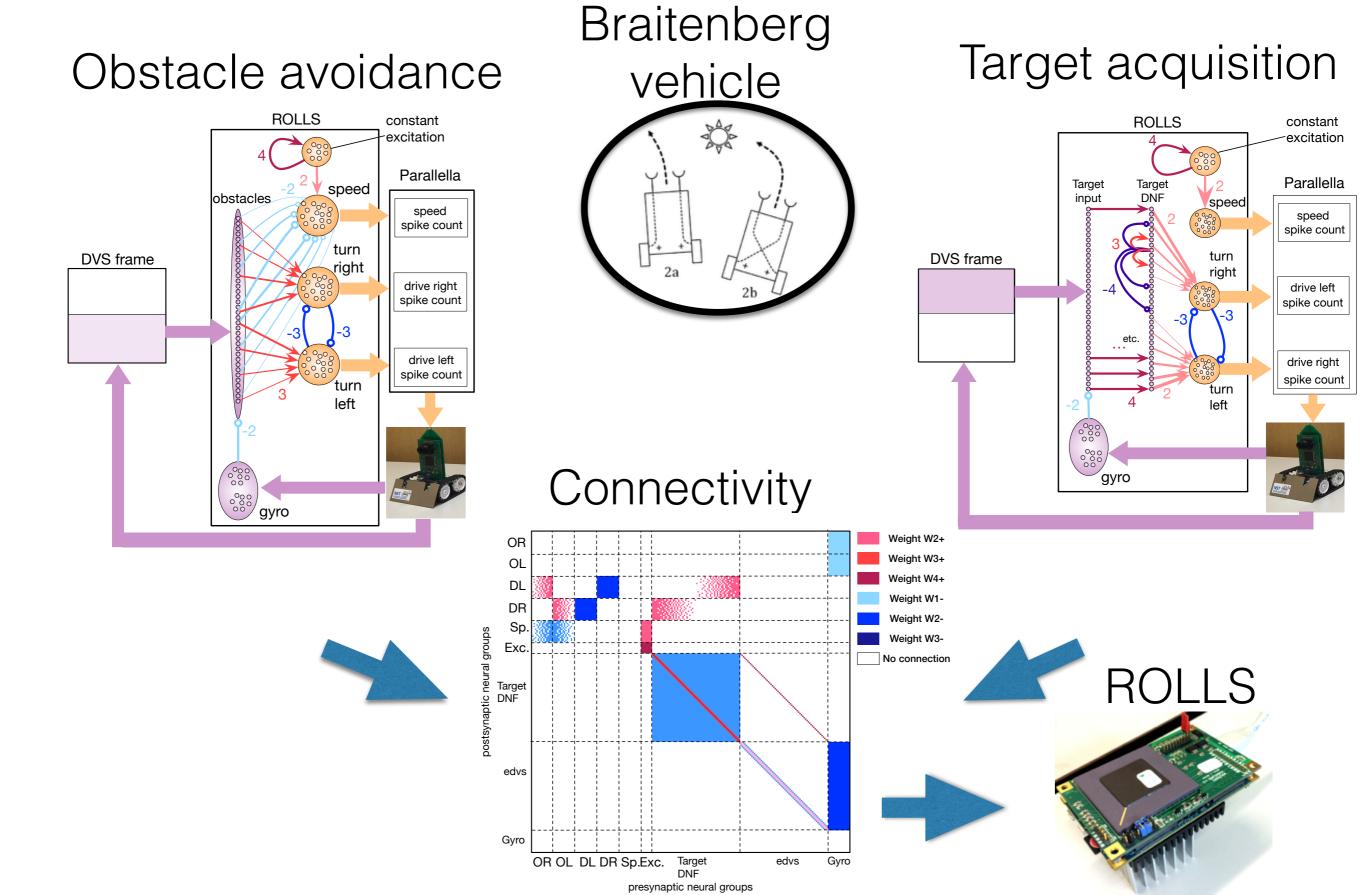
Goal-neurons Result+ neurons Results+ neurons Motor-space neurons 20000 40000 60000 80000 Time, ms

Learning the inverse mapping

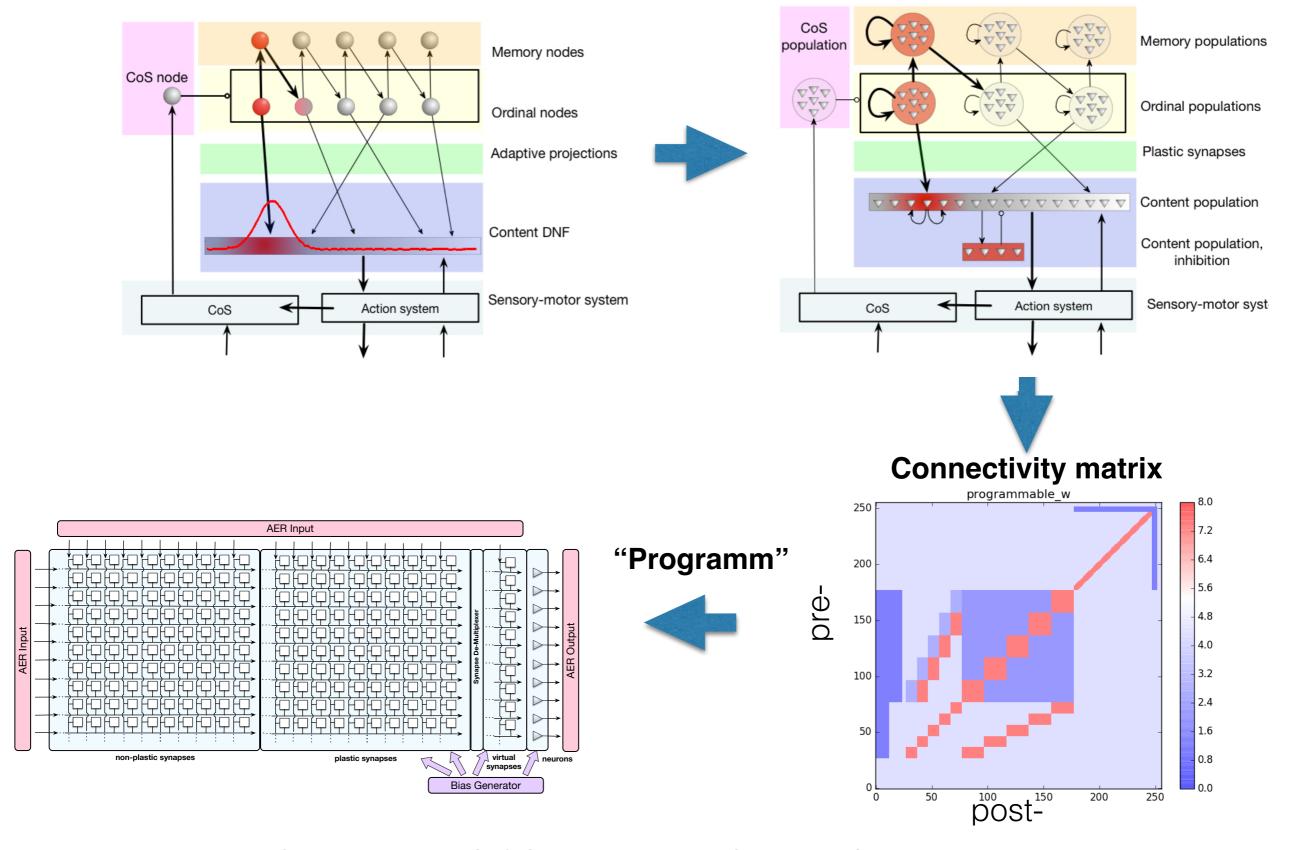


Glatz, S.; Kreiser, R.; Martel, J. N. P.; Qiao, N. & Sandamirskaya, Y. Adaptive motor control and learning in a spiking neural network, fully realised on a mixed-signal analog/digital neuromorphic processor. ICRA, arxiv, 2019

Obstacle avoidance and target acquisition

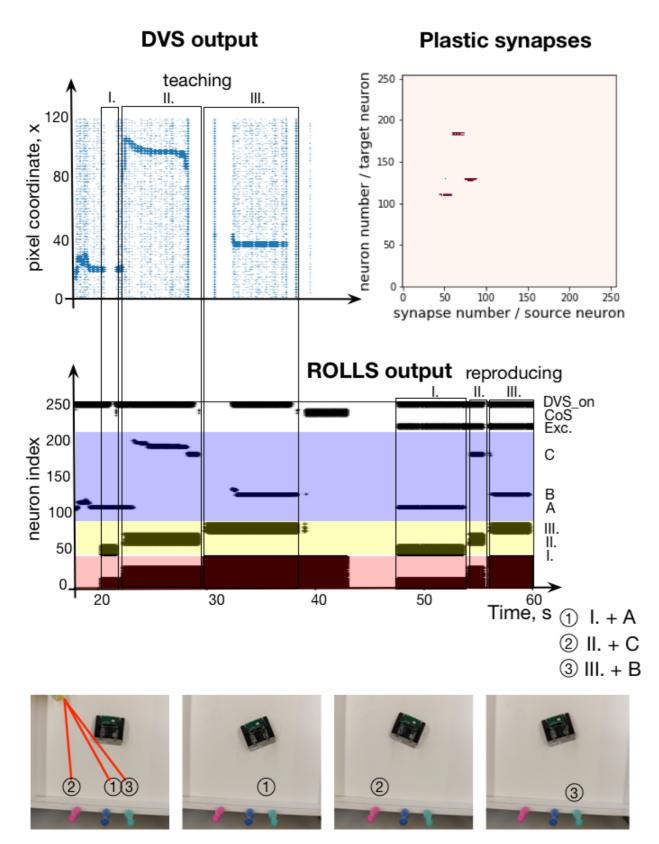


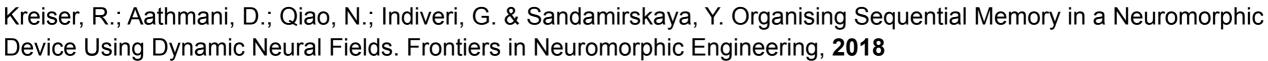
Sequence learning "program"



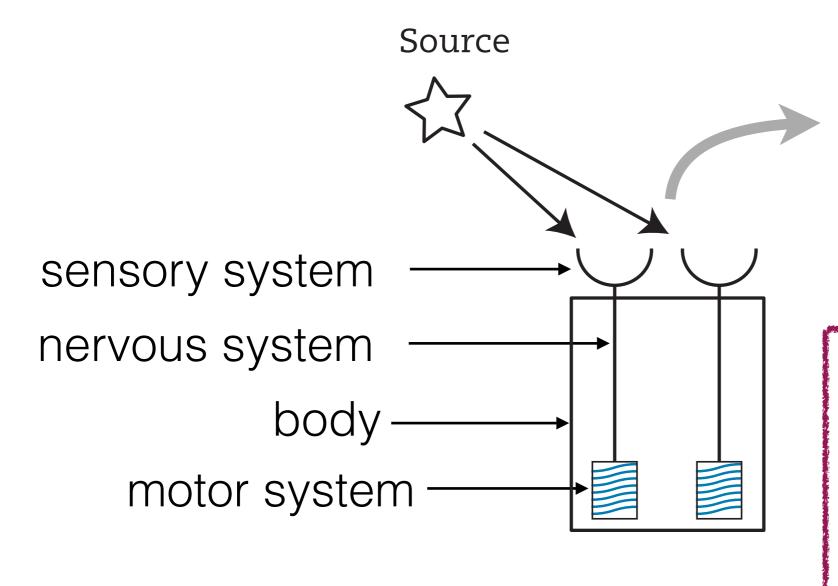
Kreiser, R.; Aathmani, D.; Qiao, N.; Indiveri, G. & Sandamirskaya, Y. Organising Sequential Memory in a Neuromorphic Device Using Dynamic Neural Fields. Frontiers in Neuromorphic Engineering, **2018**

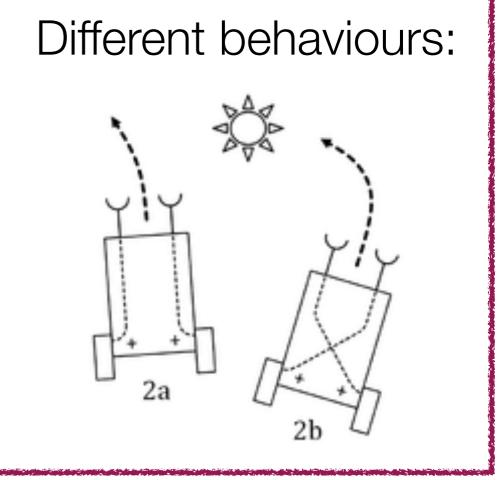
Embodied experiment



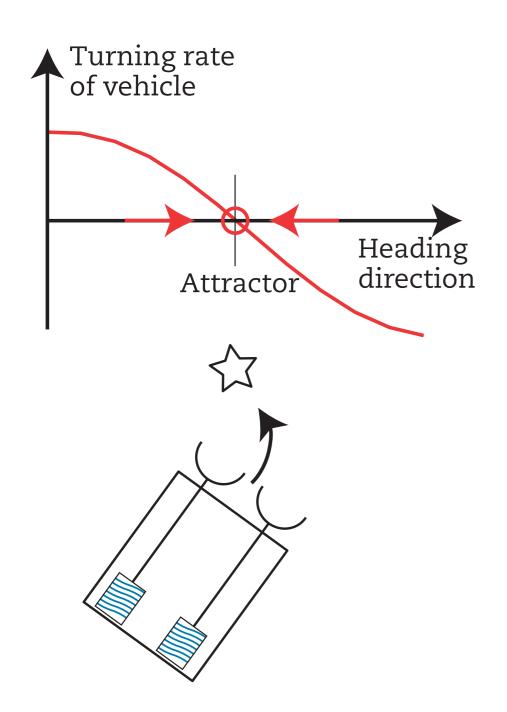


Neuronal mechanisms: Braitenberg Vehicle





Mathematical formalisation: attractor dynamics

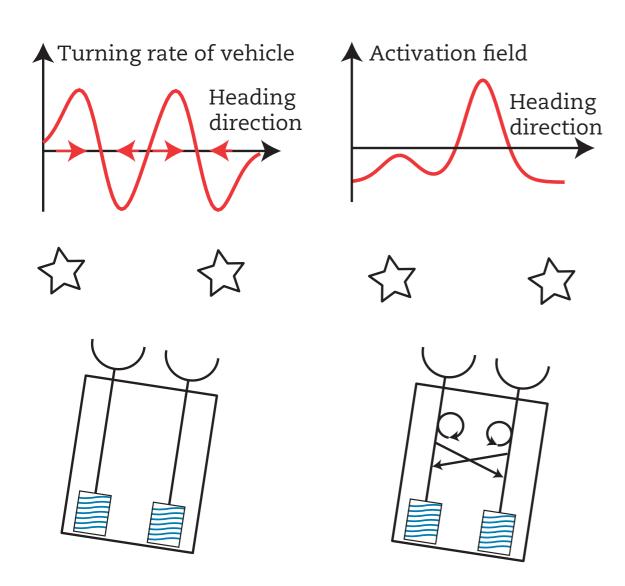


- "behavioral variable"
 - describes the behavior
- its rate of change:

$$\tau \dot{\phi}(t) = -\phi(t) + A(t)$$

- determines its dynamics
- overt behavior corresponds to attractors
 - stability

Multiple targets



- represent "utility" of options
- stabilise decisions

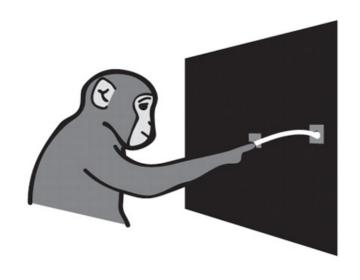
$$\dot{\phi}(t) \rightarrow \dot{u}(\phi, t)$$

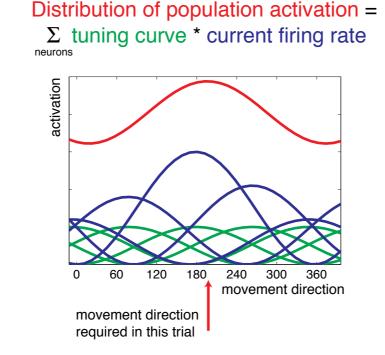
"activation" and its dynamics

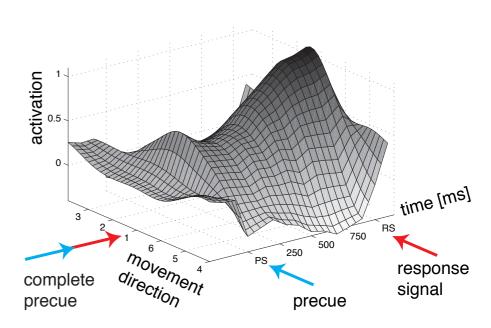
Neural dynamics

Neuronal correlate of behavior: population activity

"Reaching" task







→ "Dynamic neural field" model

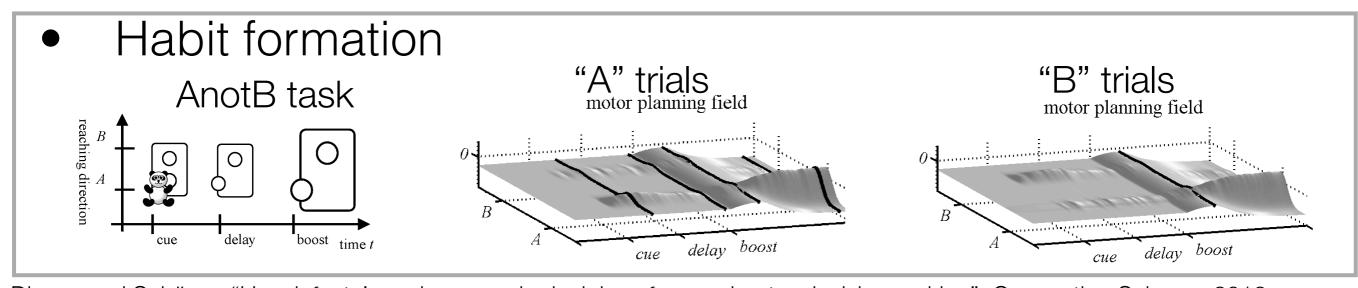
$$\tau \dot{u}(x,t) = -u(x,t) + h + \int f(u(x',t))\omega(x-x')dx' + I(x,t)$$

Amari, S. Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 1977, 27, 77-87

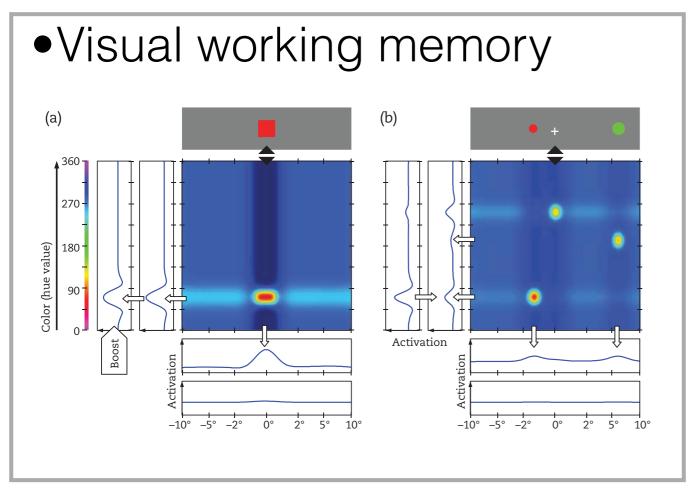
Wilson, H. R. & Cowan, J. D. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, **1973**, 13, 55-80

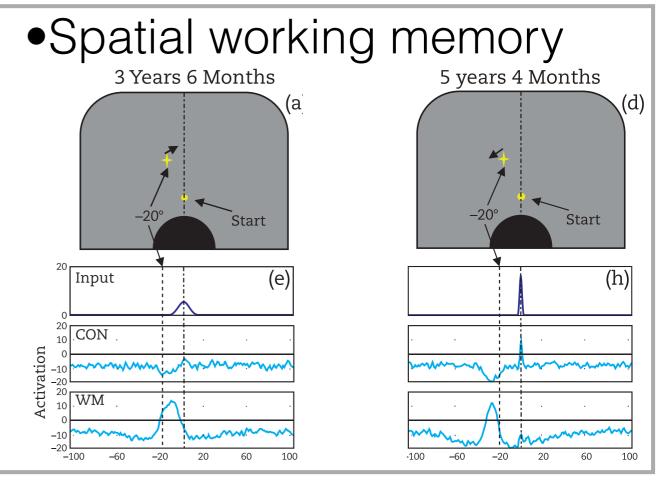
Gerstner, Grossberg, Ermentrout, Coombes, Schöner&Spencer, Erlhagen...

Dynamic Neural Fields explain behavior



Dineva and Schöner, "How infants' reaches reveal principles of sensorimotor decision making", Connection Science, 2018



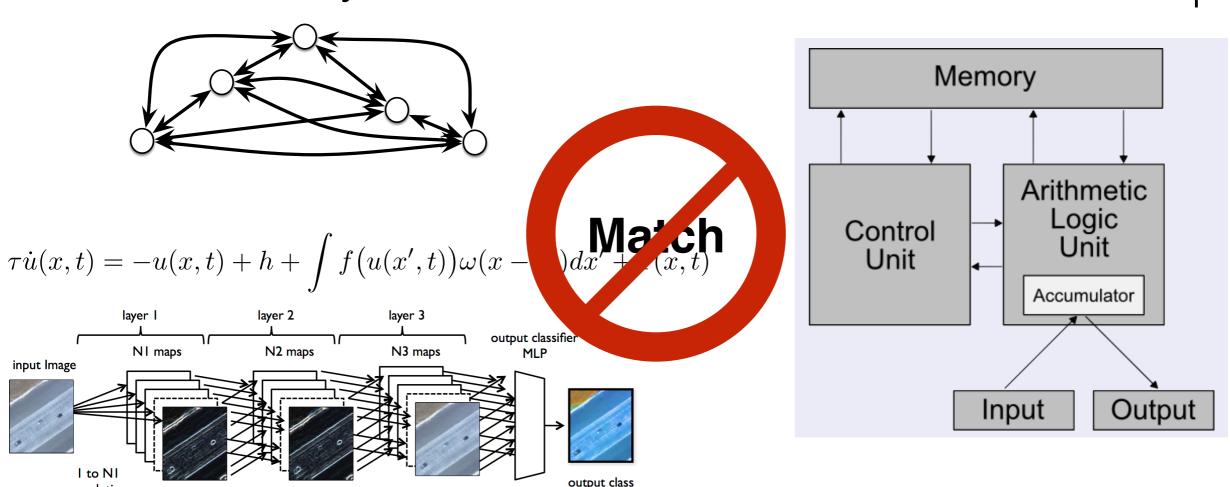


Schöner, Spencer, and the DFT group. "Dynamical Thinking: Primer to Dynamic Field Theory, Oxford Press, 2015

"Implementation issue"

Neuronal dynamics

"Von Neumann" computer



analogue values

convolutions

parallel processing

NI/MI to N2

convolutions

memory and computation interlinked

N2/M2 to N3

convolutions

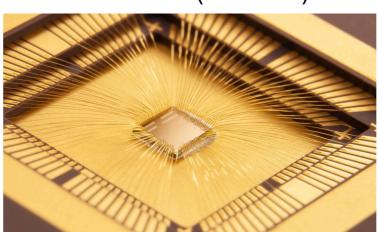
- digital representations
- sequential processing
- separate memory unit

Neuromorphic Hardware

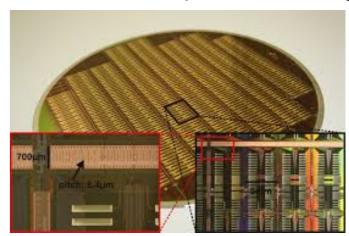
Brain-inspired computing or sensing devices that emulate activity of biological neurons and synapses

"BrainDrop" (Stanford)

DYNAP (Zurich)



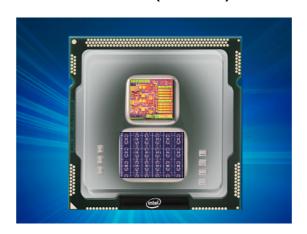
BrainScaleS (Heidelberg)



Analog

"TrueNorth" (IBM)

Loihi (Intel)



SpiNNaker (Manchester)

NEUROTECH

Create and promote neuromorphic community in Europe: www.neurotechai.eu