The structure of complex neural networks and its effects on learning

Pau Vilimelis Aceituno ^{1,3} Gang Yan ² Yang-Yu Liu ^{3,4}

¹Max Planck Institute for Mathematics in the Sciences

²School of Physics Science and Engineering, Tongji University

³Channing Center for Complex Medicine, Brigham and Womens' Hospital and Harvard Medical School

⁴Dana Faber Center for Cancer Research

Reservoir Computing^{1,2}: Introduction

Reservoir is:

- A Recurrent Neural Network
- A dynamical system

Training: Linear regression from the dynamical system to the target

System equations

$$egin{aligned} \mathbf{x}(t) &= f(\mathbf{W}\mathbf{x}(t-1) + \mathbf{w}_{\mathsf{in}}u(t)) \ y(t) &= \mathbf{w}_{\mathsf{out}}\mathbf{x}(t) \ \mathbf{w}_{\mathsf{out}} &= \arg\min\sum (y(t) - s(t))^2 \end{aligned}$$

 $^{^{1}}$ Jaeger, H. and Haass, H. "Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication." Science (2004)

²Maass, Wolfgang, Thomas Natschläger, and Henry Markram. "Real-time computing without stable states: A new framework for neural computation based on perturbations." Neural computation (2002)

Approach

Method

- Machine Learning: Define error and problem
- Statistical Physics/Control Theory: Adapt System Dynamics
- Graph Theory: Find the right network features
- **Test**: Try many network structures/params and compare

Datasets

- a: Mackey, and Glass. "Oscillation and chaos in physiological control systems". Science (1974)
- b: Huebner, et al. "On problems encountered with dimension calculations." Measures of Complexity and Chaos. (1989)
- \boldsymbol{c} : Hammami, et al. "Improved tree model for arabic speech recognition." ICCISIT 2010

Memory and Correlations: Theory

The main feature of Recurrent Neural Networks is memory⁴: M

- ullet Memory \Longleftrightarrow Independent Variables \Longleftrightarrow low **correlations**: S
- Low Correlations \iff Large **eigenvalues**: $\langle |\lambda| \rangle$
- \bullet $\langle |\lambda| \rangle$ is a proxy for M

² Jaeger, H. "Short-Term Memory in Echo State Networks". Technical Report

Memory vs Lambda: Practical effects

Different tasks require different memories, but a single task requires the same memory for all reservoir instances \Rightarrow The performance for a single task should be maximal at a single $\langle |\lambda| \rangle$

Note: Laser Intensity Time series has two timescales \Rightarrow Multiple memory ranges

Frequency and Cycles

Main Idea

- If the reservoir resembles the target, the regression is better.
- Adapt the reservoir to the **frequencies** in the signal.

Proof

Linear regression: project N points in T-D space to a line

⇒If the points are close to the line it works better

In the frequency domain: The same!

How to

How to adapt frequency?

 \rightarrow Feedback loops (cycles)

Proof

Frequencies to autocorrelations: Wiener-Khichin Theorem
Autocorrelations to weights: Mean value theorem on the derivative

Controlling Dynamics: Adapt frequency

Performance improvement

• Heuristic: Independently optimize $\langle |\lambda| \rangle$ and ρ_L .

Conclusion

Summary:

- Correlations control memory: Use eigenvalues
- Adapting the frequency is useful: Use cycles

Open questions:

- Machine Learning: Does training give this structures?
- Neuroscience: Does synaptic plasticity enhance frequencies?
- Applications: Neuromorphic hardware, network-level training

Many Thanks to ...

- Collaborators: Yang-Yu Liu, Gang Yan
- "la Caixa" foundation for paying
- Herbert Jaeger for discussion and code

Reference: "Tailoring Recurrent Neural Networks for Optimal Learning", arxiv.org: 1707.02469