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Reservoir Computing!?: Introduction

Reservoir is:

@ A Recurrent Neural Network

@ A dynamical system

Training: Linear regression from the
dynamical system to the target

System equations

x(t) = F(Wx(t — 1) + wiqu(t))
y(t) = wourx(t)
Woue = arg min 3 (y(2) — s(1))?

4

1Jaeger, H. and Haass, H. "Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless
communication.” Science (2004)

2Maass, Wolfgang, Thomas Natschlager, and Henry Markram. " Real-time computing without stable states: A new
framework for neural computation based on perturbations.” Neural computation (2002)
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Approach

Method

@ Machine Learning: Define error and problem
e Statistical Physics/Control Theory: Adapt System Dynamics
@ Graph Theory: Find the right network features
e Test: Try many network structures/params and compare
Datasets
a Mackey-Glass Time Series b Laser Intensity Time Series c Spoken Digits Time Series
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a: Mackey, and Glass. " Oscillation and chaos in physiological control systems”. Science (1974)

b:

c:

Huebner, et al. " On problems encountered with dimension calculations.” Measures of Complexity and Chaos. (1989)

Hammami, et al. "Improved tree model for arabic speech recognition.” ICCISIT 2010

P. Vilimelis Aceituno (MPI-MiS) The structure of complex neural networks anc

3/9



Memory and Correlations: Theory

The main feature of Recurrent Neural Networks is memory*: M

@ Memory <= Independent Variables <= low correlations: S
e Low Correlations <= Large eigenvalues: (|\|)

@ (|A]) is a proxy for M
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2Jaeger, H. "Short-Term Memory in Echo State Networks”. Technical Report
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Memory vs Lambda: Practical effects

Different tasks require different memories, but a single task requires the
same memory for all reservoir instances = The performance for a single
task should be maximal at a single (|A|)

a Mackey Glass Time Series Forecasting b Laser Intensity Time Series Forecasting (o Spoken Arabic Digit Recognition
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Note: Laser Intensity Time series has two timescales = Multiple memory ranges
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Frequency and Cycles

Main Idea

@ If the reservoir resembles the target, the regression is better.
@ Adapt the reservoir to the frequencies in the signal.

Proof

Linear regression: project N points in T-D space to a line

=If the points are close to the line it works better
In the frequency domain: The same!

How to adapt frequency?
— Feedback loops (cycles) \

Proof
Frequencies to autocorrelations: Wiener-Khichin Theorem
Autocorrelations to weights: Mean value theorem on the derivative
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Controlling Dynamics: Adapt frequency

Mackey-Glass time series Laser Intensity time series Spoken Digits (Male)
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Performance improvement
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cycle length

@ Heuristic: Independently optimize (|A|) and p;.
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Mackey Glass Time Series Forecasting

Laser Intensity Time Series Forecasting
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Conclusion

Summary:
o Correlations control memory: Use eigenvalues

o Adapting the frequency is useful: Use cycles

Open questions:
@ Machine Learning: Does training give this structures?
@ Neuroscience: Does synaptic plasticity enhance frequencies?

@ Applications: Neuromorphic hardware, network-level training

Many Thanks to...
@ Collaborators: Yang-Yu Liu, Gang Yan
@ "la Caixa” foundation for paying

@ Herbert Jaeger for discussion and code

Reference: "Tailoring Recurrent Neural Networks for Optimal Learning”,
arxiv.org: 1707.02469
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