

Spatio-Temporal Signals Processing in Polychronizing Spiking Neural Networks

PRESENTED BY

Felix Wang, William Severa, Fred Rothganger

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of

Energy's National Nuclear Security Administration under contract DE-NA0003525

SAND2019-3309 C

The Importance of Spike Timing

Structure in network connectivity drives spike-timing patterns

Simple network with timing-dependent connectivity

Suboptimal activation of neurons x, y

Optimal activation of neuron x

Optimal activation of neuron y

Spatio-Temporal Encoding in Spiking Neural Networks

Spatio-temporal characterization:

- Spatial component (which neuron spiked)
- Temporal component (when that neuron spiked)
- Common of real-world signals (e.g. speech, video, etc.)

In a spiking neural network:

- Self-organization driven by spiking activity, network structure, synaptic plasticity
- Associative processing of signals onto a (reproducible) spatio-temporal encoding
- Inherently distributed representation (scalable w.r.t. neuromorphic hardware)

Polychronous Neural Groups (PNGs)

Some definitions and terminology:

- Polychronous means many times, and is characterized by time-locked spiking activity
- **Polychronization** is the self-organization of a spiking neural network that yields PNGs
- Polychronizing describes networks that exhibit polychonization

Acquiring PNGs:

- From Primary Repertoire
 - Potential groups that are structurally supported
- To Secondary Repertoire
 - Activity dependent
 - Forward assembly + Backward selection

Graphical representation of PNG

Learning Experiments

Demonstrating a spatio-temporal encoding via polychonization in a toy network

- Step 1: Transform signals to spatio-temporal (spiking) domain (e.g. TIMIT speech)
- Step 2: Feed spikes into network model with plasticity (e.g. STDP)
- Step 3: Correlate PNG activations to classes during training
- Step 4: Use PNG activations to estimate classes during testing

Signal transformation to spatio-temporal domain

Measuring polychronous neural groups from network

Signal/Class	Accuracy
Phonemes	26.4%
Phonetic Categories	47.1%
Handwritten Digits	41.9%

Confusion matrices and classification accuracy on different signals

Conclusions and Future Work

Demonstration of learning as result of polychronization

- Spatio-temporal signals encoded as time-locked patterns of spiking activity
- Flexible with respect to multiple modalities (as long as in spatio-temporal domain)
- Nowhere near state-of-the-art classification accuracy (but toy network with no tuning)

Paths to improvement

- Better spiking neural network models (possibly structural plasticity)
- Processing hierarchy (abstraction, lateral and feedback connections)
- Tooling/support for more collective operations on spiking activity