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2 I The Importance of Spike Timing

Structure in network connectivity drives spike-timing patterns
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s I Spatio-Temporal Encoding in Spiking Neural Networks

Spatio-temporal characterization:
> Spatial component (which neuron spiked)
° Temporal component (when that neuron spiked)

> Common of real-world signals (e.g. speech, video, etc.)

In a spiking neural network:
> Self-organization driven by spiking activity, network structure, synaptic plasticity
° Associative processing of signals onto a (reproducible) spatio-temporal encoding

° Inherently distributed representation (scalable w.r.t. neuromorphic hardware)




Polychronous Neural Groups (PNGSs)

Some definitions and terminology:
> Polychronous means many times, and is characterized by time-locked spiking activity
> Polychronization is the self-organization of a spiking neural network that yields PNGs
> Polychronizing describes networks that exhibit polychonization

Acquiring PNGs: a
> From Primary Repertoire b
> Potential groups that are §
structurally supported g ¢
° To Secondary Repertoire d
° Activity dependent e
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Learning Experiments

Demonstrating a spatio-temporal encoding via polychonization in a toy network
o Step 1: Transform signals to spatio-temporal (spiking) domain (e.g. TIMIT speech)
o Step 2: Feed spikes into network model with plasticity (e.g. STDP)
o Step 3: Correlate PNG activations to classes during training

o Step 4: Use PNG activations to estimate classes during testing
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Signal transformation to spatio-temporal domain Measuring polychronous neural groups from network
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s | Conclusions and Future Work

Demonstration of learning as result of polychronization
> Spatio-temporal signals encoded as time-locked patterns of spiking activity
> Flexible with respect to multiple modalities (as long as in spatio-temporal domain)

> Nowhere near state-of-the-art classification accuracy (but toy network with no tuning)

Paths to improvement
> Better spiking neural network models (possibly structural plasticity)
° Processing hierarchy (abstraction, lateral and feedback connections)

° Tooling/support for more collective operations on spiking activity
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