
Synaptic plasticity in an artificial Hebbian network
exhibiting continuous, unsupervised, rapid learning

J. Campbell Scott, IBM Research Almaden (jcscott@us.ibm.com)
with Thomas F. Hayes, Ahmet S. Ozcan, Winfried W. Wilcke,

• Review / overview of the CAL network
– Context Aware Learning

• Evolution of synapse population

• Learning from few examples

• Less forgetting
1

Architecture of CAL: Context Aware Learning

2

CAL / DNN Comparison
(the top four)

3

DNN CAL

Data representation Analog (differentiable) neurons
Compact real vectors

Binary neurons
Sparse binary vectors

Learning Global cost function
Back-propagation of errors
Gradient descent

Strictly Hebbian (local)
Neurons that fire together,
wire together

Synapse generation Connections defined by network
design

Plastic synapses: generated, updated
and removed in response to data

Consequences Slow learning
Large data sets
Catastrophic forgetting

Learns rapidly, in real time
Few examples needed
Long term retention of most relevant

Previously demonstrated with CAL
1. Correlation via Hebb

– Input (A) fires then output (B) fires; synapse is strengthened
– Two or more inputs (A, A’) fire, then output fires;

inputs connect to the same output
Learning: “coincidence detection”

– Inference: firing output signals correlation of inputs

2. Learning sequences via Hebb
– Prediction: modulating input from neuron(s) A

reduces firing threshold of B
– Verification: input from active neuron X

causes B to fire (in the context of A)
– Prediction is verified, synapse is strengthened
– (Sub-)Sequence A→B is remembered
– B contributes to prediction of C

4

A

A’

B

A
B

X

Previously demonstrated with CAL (cont.)
3. Generation of stable representations

– 4 level hierarchy (9, 4, 1, 1 regions)
– Input binary video (rotating shapes)
– Feed-forward verified predictions
– Temporal pooling
– 4th level output: stable during each clip
– Similar / orthogonal

5

Column activity, level 4

sq tri pent 5-star 6-star hex ell
Iteration (36 per shape)

800

850

900

950

1000

C
ol

um
n

in
de

x
(s

ub
se

t o
f 1

02
4)

Previously demonstrated with CAL (cont.)

4. Proposed method to avoid
catastrophic forgetting

– Non-linear permanence decrements
reaching zero at maximum permanence

– Leads to two populations of synapse:
plastic and permanent

– (… more to follow …)

6

Distribution

What is new with CAL?
Algorithms
• More precise synaptic weights

– Beyond binary
– 4-bits virtually the same as double precision
– cf. 15 ion-channels?
– Permit hardware acceleration

• Synapses initialized with zero weight
– No “seeding” to initiate learning
– Synapses generated in response to neural activity
– Ensures that new synapses are “relevant”

• Connect newly active axons to dendrites with fewest synapses

Faster and more accurate learning
7

Synapse plasticity

8

Three phases
1. ~ 100 iterations: Creation of new synapses

First correct prediction @30
Prediction accuracy improves rapidly (>95% @300)

2. ~ 100 – 4000: Pruning starts
Minor loss of accuracy from ~ 400

3. >~ 4000: Prune weakest
Some neurons become permanent – never forget
Accuracy reaches 100%

After 10k iterations
• Fewer than 0.14% of possible connections are made
• Many synapses are permanent (weight=1)
• Remainder are tending weaker

number of
synapses

Accuracy of
prediction

[Input data is quasi-chaotic, non-repeating sequence from population equation.
Weights have 4-bit precision]

Weight distribution

1

2 3

0 2000 4000 6000 8000 10000
Iteration

0

10

20

30

40

50

60

Pe
rc

en
t c

or
re

ct
ly

 p
re

di
ct

ed

CAL
RNN

Fast learning – compare conventional RNN

9

Input: text sequence (Ch. 1 of Alice in Wonderland)
Single pass (11,263 characters)
Include spaces, punctuation, new-line, etc. (hard)

One input character per iteration, predict next.
Metric: percent correctly predicted.

Single region of CAL.
• First correct prediction @80,
• 20% accuracy @700,
• 30% @900, 40% @1500
• Accuracy ~ 2.5x previous version of CAL

RNN: Elman network, one hidden layer
• Also trained one character at a time.
• Minimize cross-entropy
• Reaches 20% at @9000 and 20.5% @100k, but …

What is being learned in text example?

10

Iterations 51 to 100
Input 'y her sister on the bank, and of having nothing to’
CAL ' t yytit idVbfLsierse Gonk on ben!ng td ieng ki'
RNN ' '

Iterations 1951 to 2000
Input 'e came upon a heap of sticks and dry leaves, and t'
CAL 'e tate ttG ttte t tu th nen tt t _l te ttB t'
RNN ' t t t t t t tt t t'

Iterations 10951 to 11000
Input 'she remained the same size: to be sure, this gener’
CAL 'the t hesngI the thne thnXr th tertht then t rd '
RNN ' w t t t s s s s s '

CAL predictions are clearly based on context: initially short words and common syllables.
Spaces often correctly placed, e.g. after “…ing,” “and”

RNN initially predicts based frequency
e.g. 18% are spaces, reaches ~18% accuracy by predicting all spaces. Then too many ‘t’s.

correct in context

Learn rapidly or … ?

11

Towards immortal memory
Do nonlinear Hebb updates minimize forgetting?

• 3 (initially identical) networks distinguished by first task

A. Easy: random sequence of length 100;
100% accurate after ~10 epochs

B. Moderate: 3 sentences in random order;
87% accurate after 1 epoch (34x3 sentences)

C. Hard (Alice in Wonderland):
40% accurate after single epoch (11,263 characters)

• Then each network cycles through all tasks
(still updating synapses)

12

Distribution

Network A (trained first on Task 1)

Task 1 Task 2 Task 3 Task 1 Task 2 Task 3 Task 1
0

50

100

Network B (trained first on Task 2)

Task 2 Task 3 Task 1 Task 2 Task 3 Task 1 Task 2
0

50

100

Pe
rc

en
ta

ge
 c

or
re

ct
ly

pr
ed

ic
te

d

Network C (trained first on Task 3)

Task 3 Task 1 Task 2 Task 3 Task 1 Task 2 Task 3
Order of tasks

0

50

100

Learning not to forget

13

Task 1: sequence of 100 random characters
Task 2: three sentences in random order
Task 3: Alice in Wonderland, Chapter 1

Network A learns task 1 first, 100 % accurate
Network B learns task 2 first, 87%
Network C learns task 3 first, 40%

All networks show
• Small or no drop returning to first learned task
• Small change (+/-) returning to 2nd, 3rd tasks

CAL may forget “gracefully” - not catastrophically

Loss of capacity after first task learned
Network size was selected for single task
and fast execution

Capacity is an issue

14[Gary Larsen, Far Side]

Conclusions
• (In CAL) Memories are retained in synapses

– Generated and retrieved by neuron activity

• Synapse plasticity
– Structural: new connections made, irrelevant ones removed
– Weight adjustment: based on local neural activity
– No plasticity: reach full permanence

• Leading to
– Fast learning
– In context via modulating synapses/dendrites

15

16

“It is important to make the right connections”

(Hugh Whitemore, Breaking the Code – a play about life of Turing)

Acknowledgments

Hernan Badenes
Charles Cox
Pritish Narayanan
David Pease
Tomasz Kornuta
Jayram Thathachar
Alexis Asseman

17

Numenta
Jeff Hawkins
Subutai Ahmad

Hyong-Euk (Luke) Lee

Takamasa Tsunoda

Ryusei Shingaki

Thank you!

18

Backup

19

Summary
• CAL learns rapidly from every input, in real time

– Synapse weights change in response to local activity (Hebb)
– Not regression to minimize a loss function
– Multimodal input: binary images, text (integers), real numbers, … can be mixed

• CAL learns sequences via context provided by prior data

• CAL generates representations of sequences in upper levels

• Nonlinear Hebb reduces forgetting

• Feedback via apical synapses is predictive

20

What next?
• How to apply predictive feedback?

– Provide longer term context

• Interpretation via correlator
– E.g. text and video input

• More general modulation
– Not all neurotransmitters are ionic, potentiating
– e.g. dopamine modulates learning rate (magnitude of synapse updates)
– etc.

• etc.

21

Some key definitions

• encoder: encodes analog values (from sensor) as sparse binary vector

• binary correlator: signals when any pair of axons are frequently active at the
same time

• sequence memory: predicts which neurons are expected to be active at the
next time step, and strengthens synapses if they are indeed active

• overlap: the number of active axons which have synaptic connections
to the same dendrite

Feed-forward (FF) upwards in the hierarchy

23

Level 4

Level 3

Level 2

Level 1

• In each region, temporal pooling of feed-forward data (sparse binary vectors)
• Union (logical OR) of consecutive iterations
• Input to correlator
• i.e. correlator “compares” consecutive FF vectors

Input data:
• sequence of binary images
• 9 receptive fields
• 7 rotating shapes
• 36 frames per shape
• i.e 7x36 = 252 iterations / epoch

Representation of sequences is spontaneous

24

• As the data propagate upward,
column activity becomes increasingly stable.

• At level-4, the same mini-columns remain active for each shape

Each pixel corresponds to one mini-column
Color shows fraction of time it is active for a single shape

pattern means
“rotating square”

Representations range in similarity / orthogonality

25

Jaccard similarity of binary vectors, A B, is
overlap normalized by union.

𝐽𝐽 =
|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴 ∪ 𝐵𝐵|

𝐽𝐽=0, orthogonal; 𝐽𝐽=1, identical.
Compare outputs of level-4
correlator at pairs of iteration.

6-pointed star is most like triangle
(it is two triangles)

Ellipse is virtually orthogonal to
everything else

Visualization
of similarity

26

Quite similar
(J = 0.88)

Some similarity
(J = 0.19)

Orthogonal
(J = 0)

AND XOR

Jaccard and Hamming

27

𝐽𝐽 =
2𝑁𝑁𝑎𝑎 − 𝐻𝐻
2𝑁𝑁𝑎𝑎 + 𝐻𝐻

𝐻𝐻 = 2𝑁𝑁𝑎𝑎
1 − 𝐽𝐽
1 + 𝐽𝐽

𝑁𝑁𝑎𝑎 bits active in
each binary vector
(here 𝑁𝑁𝑎𝑎 = 32)

Full disclosure – capacity issue

28

Network A Network B Network C

Task 1 100

Task 2 30.5 86.7

Task 3 12.1 35.0 40.0

Task 1 100 13.6 35.1

Task 2 29.5 83.6 65.8

Task 3 13.4 32.3 37.8

Task 1 100 14.4 36.6

Task 2 81.2 72.8

Task 3 35.7
[Gary Larsen, Far Side]

Accuracy [%]

Data flow and timing: feed-forward and feedback

29

𝒙𝒙𝑛𝑛(𝑡𝑡)
Binary correlator

{𝒗𝒗𝑛𝑛−1(𝑡𝑡 − 1)}

Apical synapses

{𝒚𝒚𝑛𝑛+𝑚𝑚 𝑡𝑡 }

Sequence memory

𝒚𝒚𝑛𝑛(𝑡𝑡 + 1)
𝒚𝒚𝑛𝑛(𝑡𝑡)�𝒚𝒚𝑛𝑛(𝑡𝑡)

𝒗𝒗𝑛𝑛(𝑡𝑡)
�𝒚𝒚𝑛𝑛(𝑡𝑡 + 1)

1. Data (vector) from region(s) below
concatenated and enter correlator

2. Output from correlator passed to
sequence memory, and fed back

3. Compared with previous prediction
Verified neurons fire and feed-forward
New prediction saved for next iteration

4. Feedback from upper levels to apical synapses
5. Modulate sequence memory and/or correlator
6. Next input is (concatenation of)

verified neurons in level below.

Iteration

Active feedback

5 10 15 20

5

10

15

20

Active columns

5 10 15 20

5

10

15

20

Overlap, iter. 4983: input"g"

5 10 15 20

5

10

15

20

n c i p l e s . CA L i s b u i l t o n s e v e r a l f u n d ame n t a l p r i n c i p l e s . T h e 1 9 9 0 s s a w t h e eme r g e n c e o f c o g n i t i v e
Input

0

0.2

0.4

0.6

0.8

1

Si
m

ila
rit

y

CAL190301_1401

Learning in apical synapse array

30

Jaccard similarity of binary vectors, A B, is overlap normalized by union: |𝐴𝐴∩𝐵𝐵|
|𝐴𝐴∪𝐵𝐵|

Compare active
apical dendrites
with next column activity

Apical activity Active columns Match (AND)

Apical feedback
predicts next input.
(not every iteration)

Long term context

Binary correlation
• Correlation is a time average showing how often a pair of bits are

active at the same time, vs. being active at different times
• The correlation between two bits, 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗

of binary vector 𝒙𝒙(𝑡𝑡), 𝑡𝑡 = 1 …𝑁𝑁 is

χ 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 =
∑𝑡𝑡[𝑥𝑥𝑖𝑖 𝑡𝑡 ∧ 𝑥𝑥𝑗𝑗 𝑡𝑡 − 𝑥𝑥𝑖𝑖 𝑡𝑡 ⊗ 𝑥𝑥𝑗𝑗 𝑡𝑡]

∑𝑡𝑡[𝑥𝑥𝑖𝑖(𝑡𝑡)| 𝑥𝑥𝑗𝑗(𝑡𝑡)]
where the numerator is

positive, +1, (∧ ≡ AND) if both bits are on
negative, -1, (⊗≡ XOR) if only one bit is on

and the denominator is unity (| ≡ OR) when either one is on, and
normalizes −1 ≤ χ ≤ 1.

• Reduces to

χ 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 =
∑𝑡𝑡[3𝑥𝑥𝑖𝑖 𝑡𝑡 𝑥𝑥𝑗𝑗 𝑡𝑡 − 𝑥𝑥𝑖𝑖 𝑡𝑡 − 𝑥𝑥𝑗𝑗(𝑡𝑡)]
∑𝑡𝑡[𝑥𝑥𝑖𝑖 𝑡𝑡 + 𝑥𝑥𝑗𝑗 𝑡𝑡 − 𝑥𝑥𝑖𝑖 𝑡𝑡 𝑥𝑥𝑗𝑗 𝑡𝑡]

Dendrites

Axons

... ...

...
...

...
...

...
...

Connected – unchanged
Strengthened
New
Weakened

Binary correlation
• The correlation between two bits, 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 of binary vector 𝒙𝒙(𝑡𝑡), 𝑡𝑡 = 1 …𝑁𝑁 is

χ 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 =
∑𝑡𝑡[𝑥𝑥𝑖𝑖 𝑡𝑡 ∧ 𝑥𝑥𝑗𝑗 𝑡𝑡 − 𝑥𝑥𝑖𝑖 𝑡𝑡 ⊗ 𝑥𝑥𝑗𝑗 𝑡𝑡]

∑𝑡𝑡[𝑥𝑥𝑖𝑖(𝑡𝑡)| 𝑥𝑥𝑗𝑗(𝑡𝑡)]

• Reduces to

χ 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 =
∑𝑡𝑡[3𝑥𝑥𝑖𝑖 𝑡𝑡 𝑥𝑥𝑗𝑗 𝑡𝑡 − 𝑥𝑥𝑖𝑖 𝑡𝑡 − 𝑥𝑥𝑗𝑗(𝑡𝑡)]
∑𝑡𝑡[𝑥𝑥𝑖𝑖 𝑡𝑡 + 𝑥𝑥𝑗𝑗 𝑡𝑡 − 𝑥𝑥𝑖𝑖 𝑡𝑡 𝑥𝑥𝑗𝑗 𝑡𝑡]

Lateral connections provide context

33

Sequence memory
(L-II/III)

Correlator
(L-IV)

Column active in ‘E’ representation Column active in ‘T’ representation

Cell active ‘(E)T’

From cell in ‘A’ column

Cell active ‘(A)T’

Active cell (.)E

	Synaptic plasticity in an artificial Hebbian network�exhibiting continuous, unsupervised, rapid learning�J. Campbell Scott, IBM Research Almaden (jcscott@us.ibm.com)�with Thomas F. Hayes, Ahmet S. Ozcan, Winfried W. Wilcke,
	Architecture of CAL: Context Aware Learning
	CAL / DNN Comparison�(the top four)
	Previously demonstrated with CAL
	Previously demonstrated with CAL (cont.)
	Previously demonstrated with CAL (cont.)
	What is new with CAL?
	Synapse plasticity
	Fast learning – compare conventional RNN
	What is being learned in text example?
	Learn rapidly or … ?
	Towards immortal memory
	Learning not to forget
	Capacity is an issue
	Conclusions
	Slide Number 16
	Acknowledgments
	Thank you!
	Backup
	Summary
	What next?
	Some key definitions
	Feed-forward (FF) upwards in the hierarchy
	Representation of sequences is spontaneous
	Representations range in similarity / orthogonality
	Visualization�of similarity
	Jaccard and Hamming
	Full disclosure – capacity issue
	Data flow and timing: feed-forward and feedback
	Learning in apical synapse array
	Binary correlation
	Binary correlation
	Lateral connections provide context

