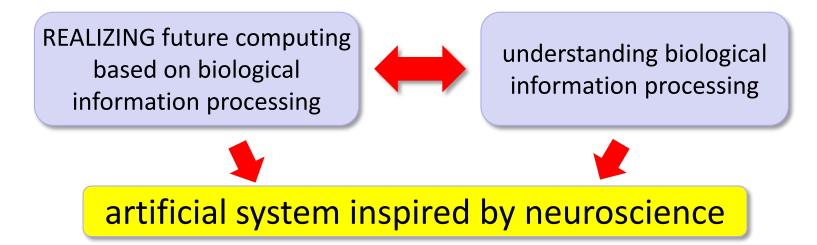
Turing or Non-Turing ? That Is The Question

how the BrainScaleS 2nd generation architecture proposes some answers that support the quest of bio-inspired artificial intelligence

Johannes Schemmel

Electronic Vision(s) Group Kirchhoff Institute for Physics Heidelberg University, Germany in collaboration with TU Dresden, Frauenhofer IZM Berlin and EPFL Lausanne

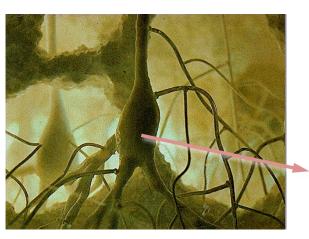
Bio-inspired artificial intelligence (Bio-AI)



Bio-AI hardware based on spike-based neuromorphic computing

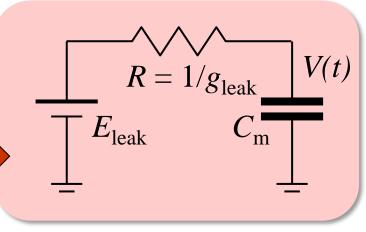
- model imprinted into hardware (rather than being simulated)
- goal: overcoming the power wall of Turing-based computing
- find local learning rules
- a lot of unknowns:
 - classical AI (DCNN) heavily relies on numerical precision for training
 - novel devices not yet available
 - CMOS best option, but still very-expensive for research groups
 - no spike-based algorithms for application-level performance (hen-and-egg problem)

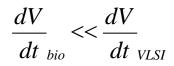
Neuromorphic computing with physical model systems



Consider a simple physical model for the neuron's cell membrane potential V:

$$C_{\rm m} \frac{dV}{dt} = g_{\rm leak} \left(E_{\rm leak} - V \right) \square$$





$\frac{dV}{dt}_{bio} \ll \frac{dV}{dt}_{VLSI} \rightarrow \frac{accelerated neuron model}{Accelerated neuron model}$

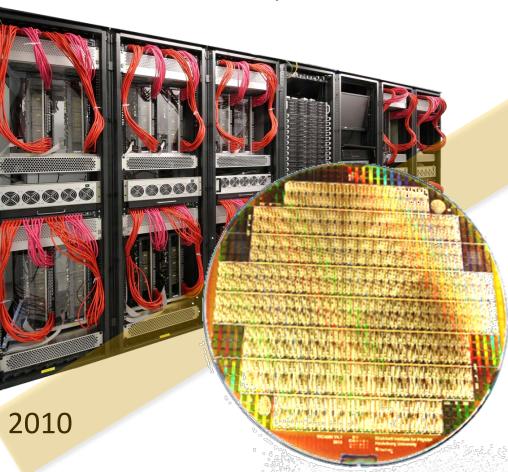
- continuous time
 - fixed acceleration factor (we use 10^3 to 10^5)
- no multiplexing of components storing model variables
 - each neuron has its membrane capacitor
 - each synapse has a physical realization

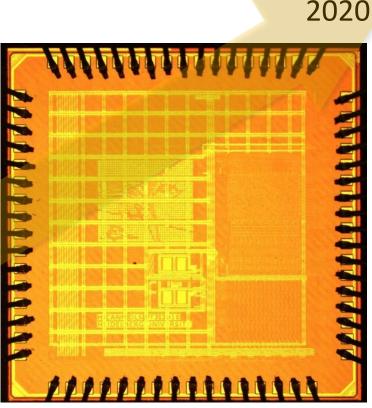
Heidelberg University

The Heidelberg BrainScaleS physical model systems

BrainScaleS 1: wafer-scale Neuromorphic system introduced:

- wafer-scale event-communication
- AdEx neuron with >10k inputs





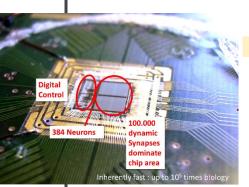
BrainScaleS 2: hybrid plasticity introduced:

- software-controlled local plasticity
- non-linear dendrites and structured neurons

Heidelberg University

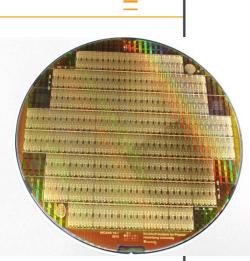
Human Brain Project – Benchmarking NMC

solving constraint satisfaction problems with spiking neurons



Universität Bielefeld

Spik	ing Sude	oku So	lver			
	Platform	#Solved Sudokus	Bio-time to sol. in ms	Real-time to sol. in s	Power in W	Energy to Solution in J
	4×4 Sudokus using architecture#1					
	NEST SpiNN-5	100 97	$\begin{array}{c} 214.6 \pm 263.1 \\ 357.1 \pm 688.9 \end{array}$	0.03 3.57	17 23.3	0.5 83.2
	BrainScaleS	86	3241.9 ± 4573.1		NA	+0.0059
	4×4 Sudokus using architecture#2					
	NEST SpiNN-3	100 99	$\begin{array}{c} 214.6 \pm 263.1 \\ 241.2 \pm 250.0 \end{array}$	0.03 2.41	17 2.7	0.5 6.5
	4×4 Sudokus using architecture#3					
	NEST SpiNN-3	100 100	$\begin{array}{c} 286.0 \pm 377.6 \\ 319.0 \pm 437.3 \end{array}$	0.12 3.19	17 2.8	2.0 8.9
10	Spikey	75	$3745.8 {\pm}~6041.11$	$3.75 \cdot 10^{-4}$	5.6	0.0021
	6×6 Sudokus using architecture#1					
	NEST SpiNN-5	98 99	$\begin{array}{c} 1769.2 \pm 1909.1 \\ 2084.8 \pm 2703.3 \end{array}$	0.62 20.85	17 23.5	10.5 490.0
	6×6 Sudokus using architecture#2					
	NEST SpiNN-3	98 91	$\begin{array}{c} 1769.2 \pm 1909.1 \\ 1641.1 \pm 1463.0 \end{array}$	0.62 16.41	17 2.7	10.5 44.3
ology						



CITEC

- NEST: 4 threads on i7-4710MQ; simulation power idle power
- BrainScaleS: calculation assumes 5pJ per pre-synaptic event
- Spikey/SpiNNaker: measure at 5V/12V supply lane

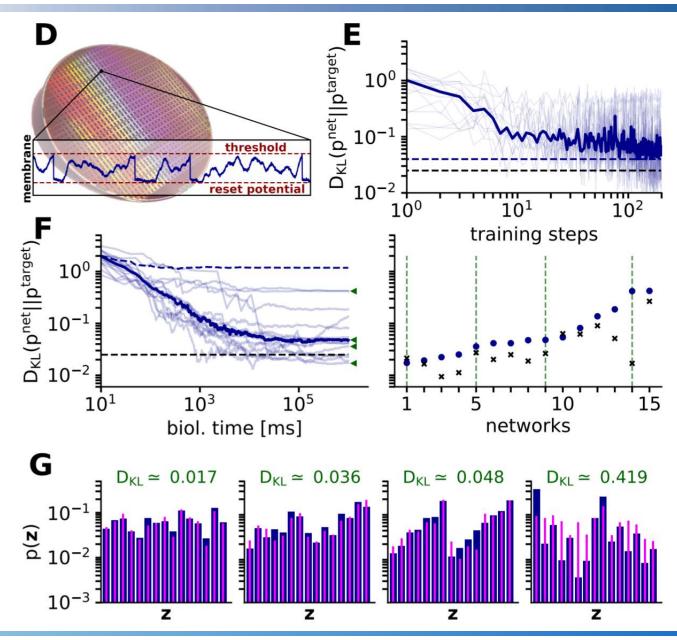
Benchmarking

slide taken from University Bielefeld presentation by Christoph Ostrau at SP9 meeting, Graz '19

Heidelberg University

5

Stochastic model example: sampling from multiple neural Boltzmann machines



6

Observations

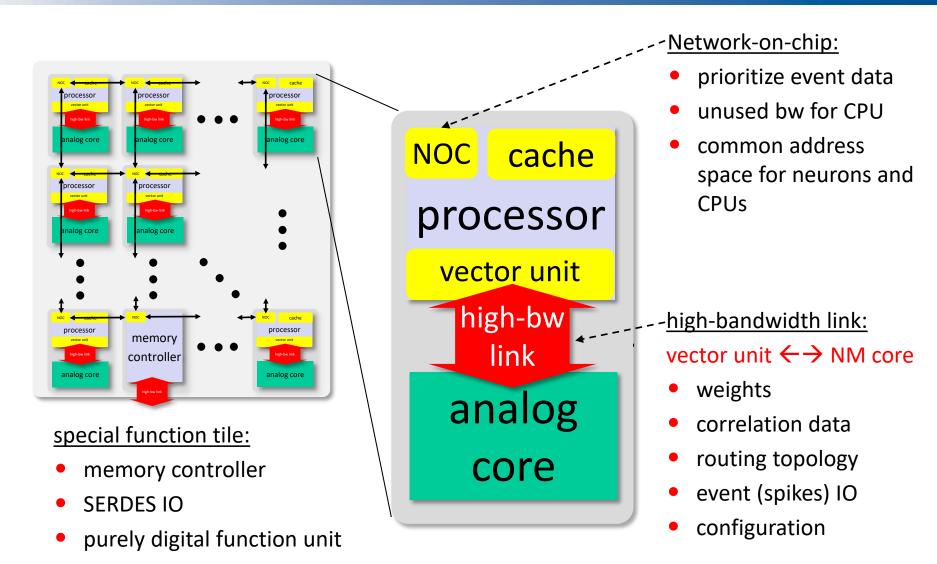
- Non-Turing physical model can autonomously, fast and power-efficient replicate learned distributions
- As previously demonstrated (NICE 17), same is true for DCNN-inference

Turing-based computing is used in multiple places in these experiments

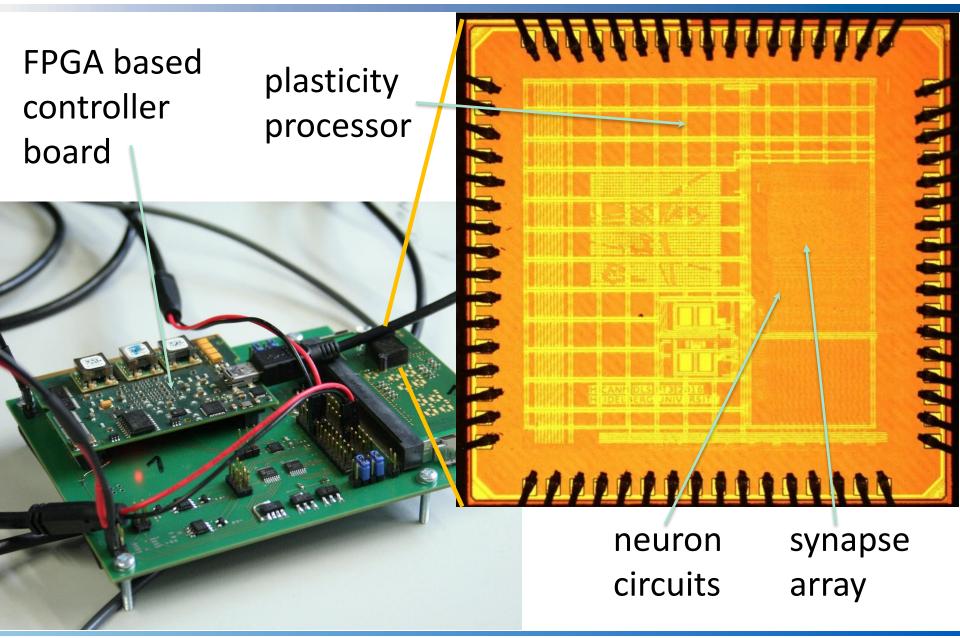
- training
- system initialization
- hardware calibration
- runtime control
- input/output data handling

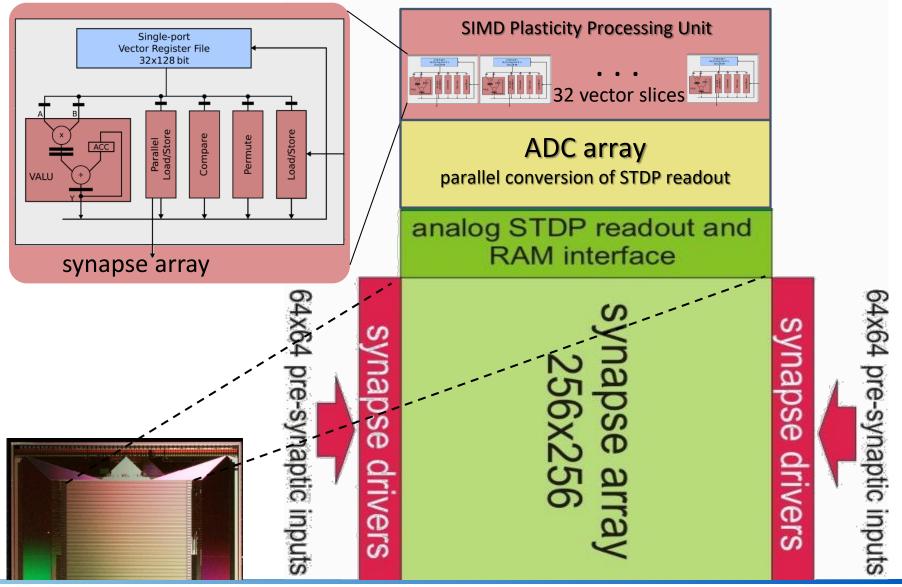
Add classical, Turing-based system to analog NM core? Why not the other way round?

Analog neuromorphic system as co-processor



BrainScaleS 2 (BSS-2): 2nd generation prototype chip

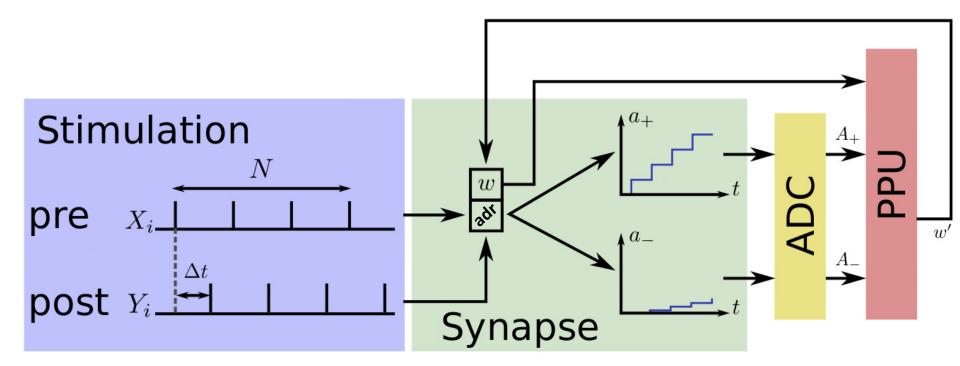




Heidelberg University

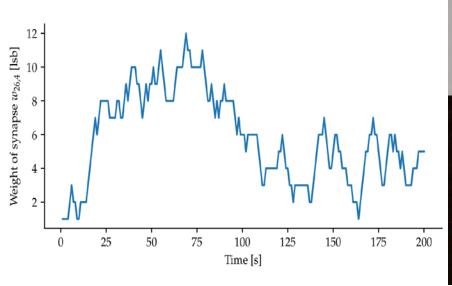
Concept of hybrid plasticity operation

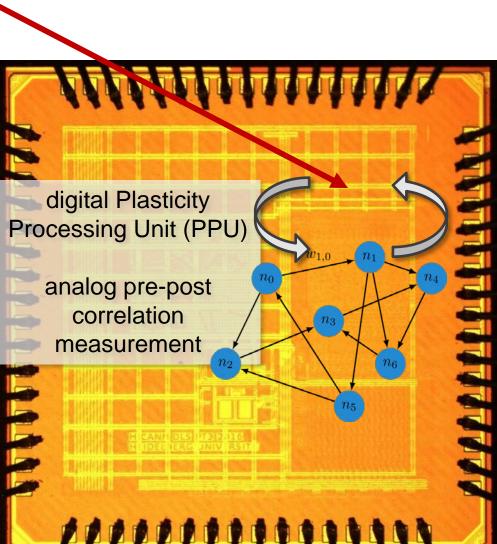
- analog correlation measurement in synapses
- A/D conversion by parallel ADC
- digital Plasticity Processing Units
 - ightarrow full access to synaptic weights (ω)
 - \rightarrow full access to configuration data (adr)



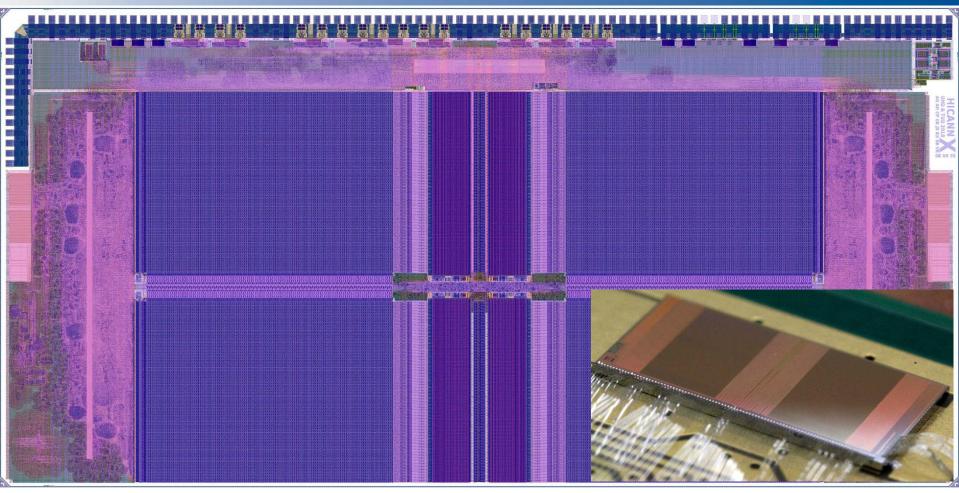
Summary: learning and plasticity with hybrid plasticity

- local plasticity loop on the chip
- continuous weight update during network operation
- algorithm can use
 - neuron firing rates
 - compartmental voltages
 - temporal correlations
 - neuromodulatory signals





BrainScaleS 2 full-size prototype chip



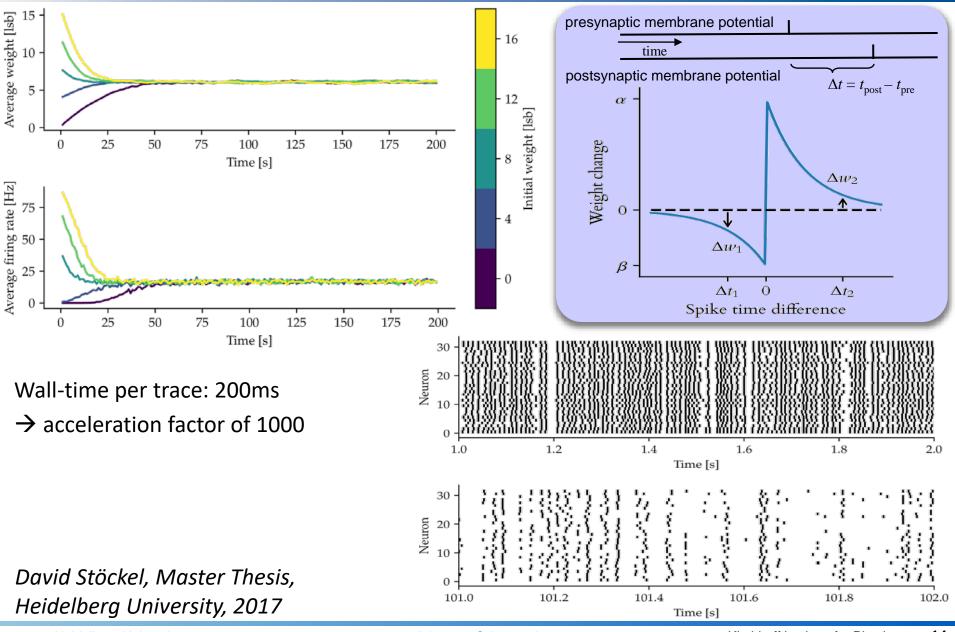
- 65nm LP-CMOS, power consumption O(10 pJ/synaptic event)
- 128k synapses
- 512 neural compartments
- two SIMD plasticity processing units
- fast ADC for membrane voltage monitoring
- 256k correlation sensors with analog storage (> 10 Tcorr/s max)

- 1024 ADC channels for plasticity input variables
- 32 Gb/s neural event IO
- 32 Gb/s local entropy for stochastic neuron operation
- current prototype not operational due to incomplete production database checking at the manufacturer
 - \rightarrow rerun pending

Heidelberg University

Johannes Schemmel

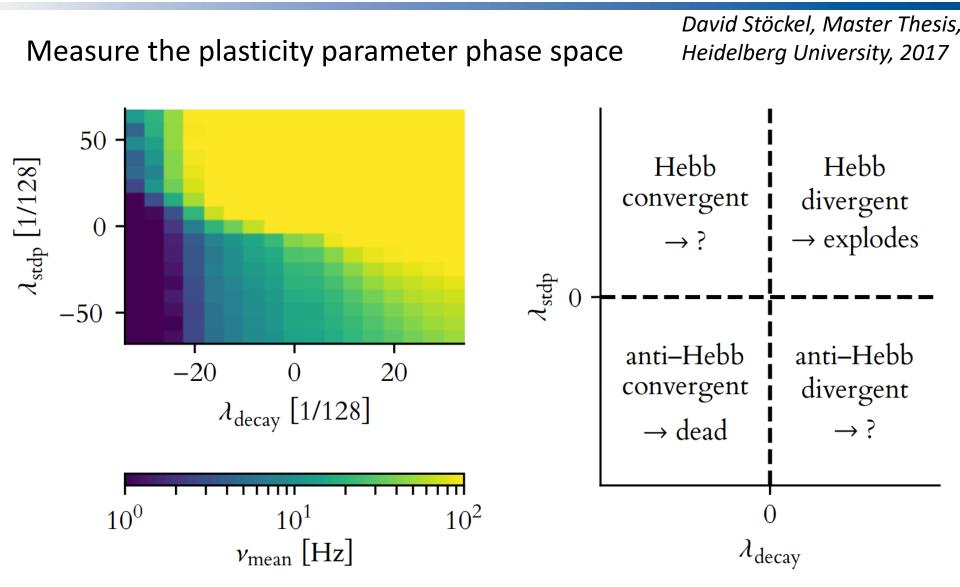
Stabilizing firing rates with spike time dependent plasticity



Heidelberg University

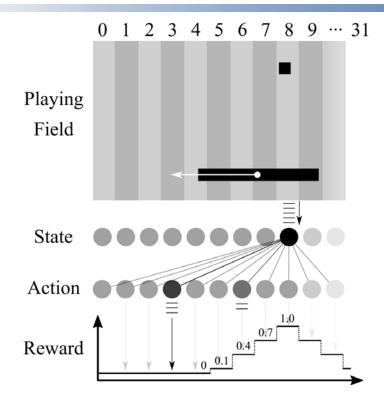
Johannes Schemmel

Stability analysis for plasticity rules

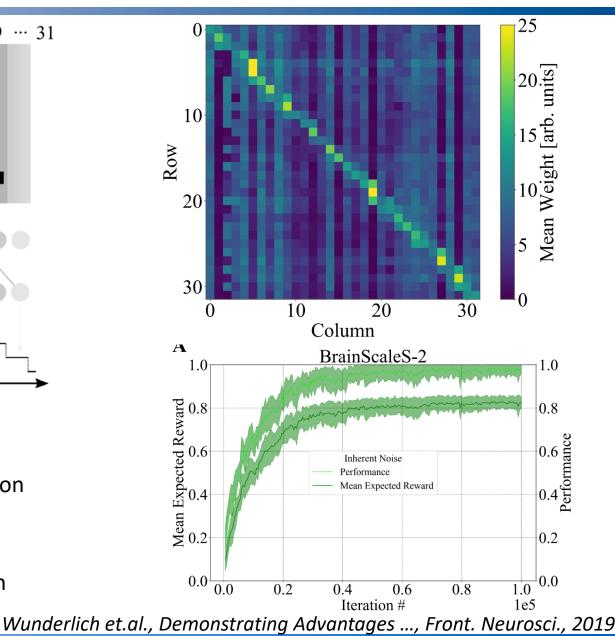


each data point is full plasticity experiment covering 200s biological real time

Learning Pong – tech demo using internal PPU only

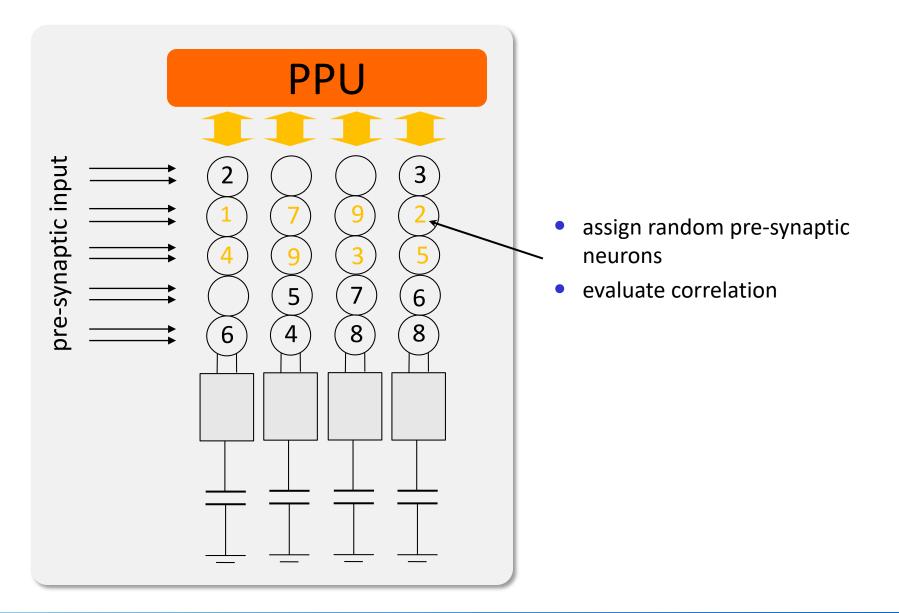


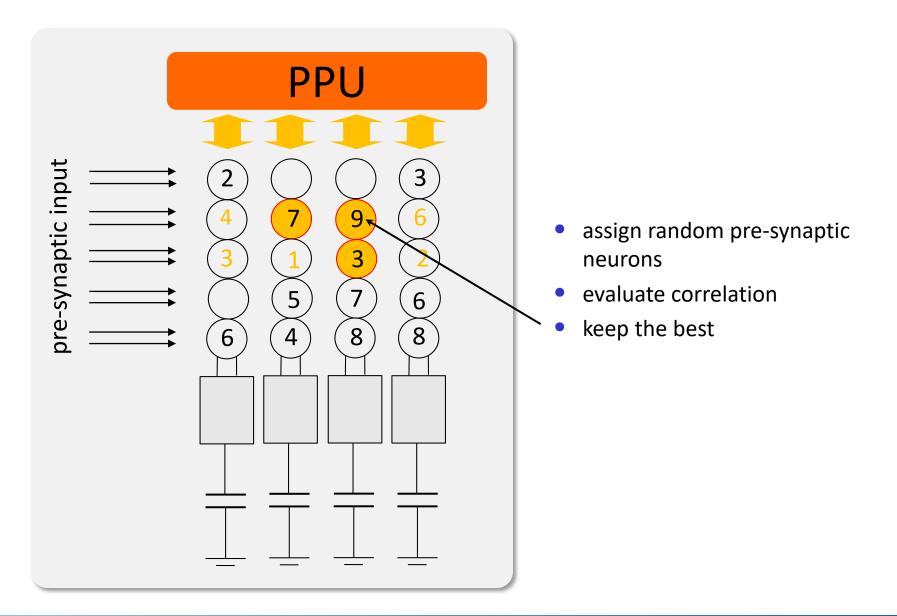
- reinforcement learning rule
- learning is calibration
- experiment runs completely on internal PPU
- 5s for 10k iterations
 network time 0.4ms/iteration
 23 μJ total chip energy

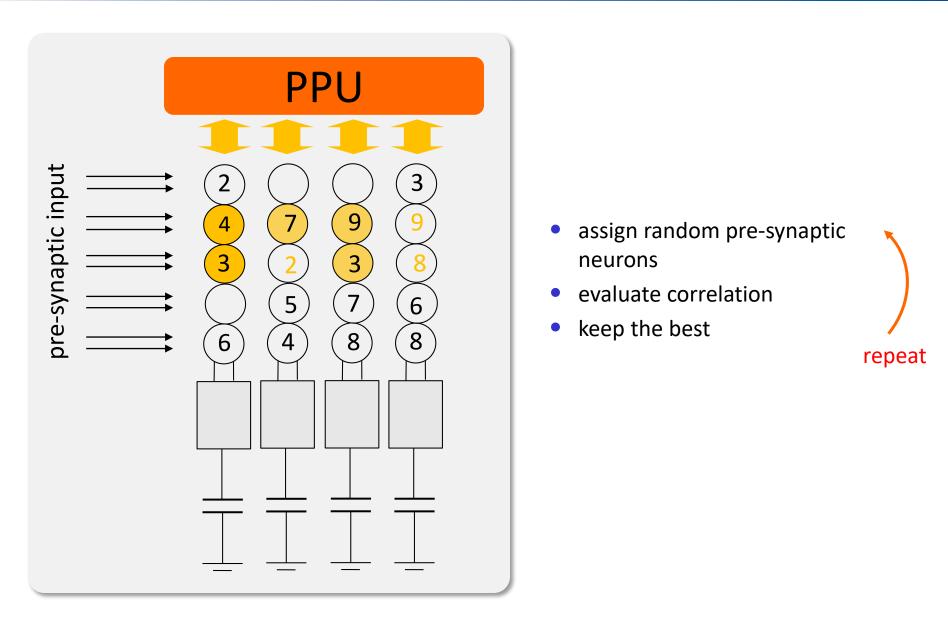


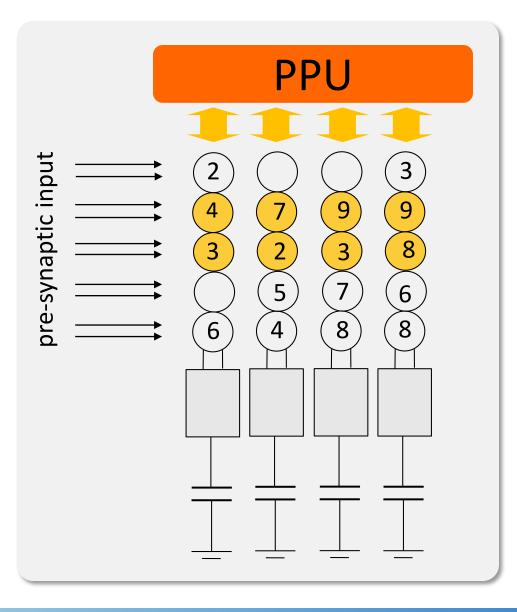
Heidelberg University

Johannes Schemmel

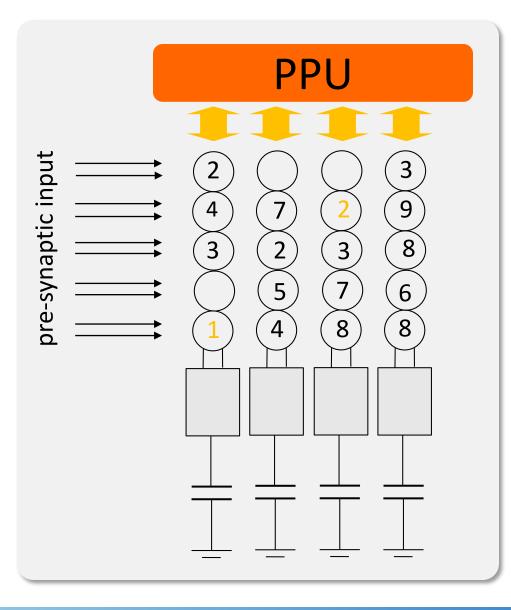






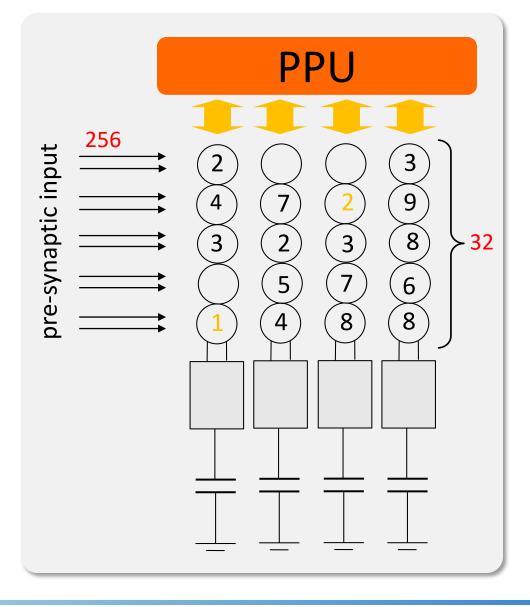


- assign random pre-synaptic neurons
- evaluate correlation
- keep the best



- assign random pre-synaptic neurons
- evaluate correlation
- keep the best
- replace weakly correlating synapses constantly against random new ones

Experimental Example : Structural Plasticity



- 256 pre-synaptic inputs mapped to single dendrite with 32 active synapses
- plasticity rule combines structural, STDP and homeostatic terms:

```
if \omega \ge \theta_{rand}:

\omega' \leftarrow \omega

+\lambda_{STDP}(c_{+} + c_{-})

-\lambda_{hom}(\nu + \nu_{target})

a' \leftarrow a

else:

\omega' \leftarrow \omega_{init}

a' \leftarrow rand(0,8)
```

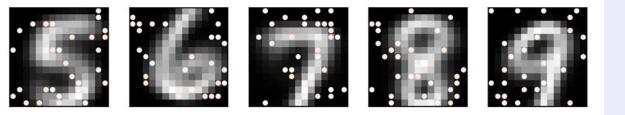
B. Cramer and S. Billaudelle, unpublished work, 2018

Supervised learning

0.0 s



- 256 pre-synaptic inputs mapped to single dendrite with 32 active synapses
- plasticity rule combines structural, STDP and homeostatic terms:

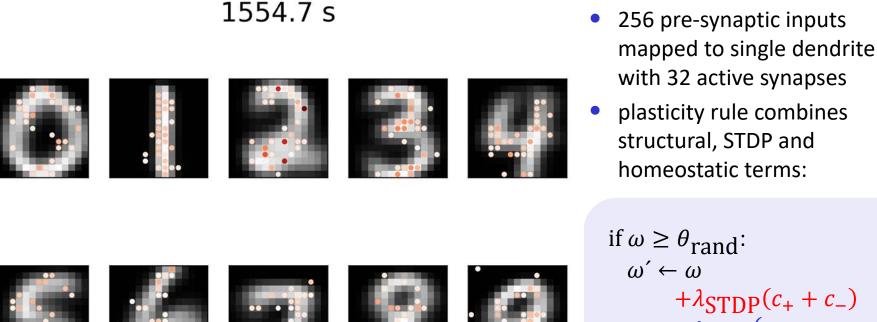


- dots represent realized (active) synapses
- ten target groups (with three dendrites each) trained simultaneously
- 1.5 s wall time needed for emulation

if $\omega \ge \theta_{rand}$: $\omega' \leftarrow \omega$ $+\lambda_{STDP}(c_{+} + c_{-})$ $-\lambda_{hom}(\nu + \nu_{target})$ $a' \leftarrow a$ else: $\omega' \leftarrow \omega_{init}$ $a' \leftarrow rand(0,8)$

B. Cramer and S. Billaudelle, unpublished work, 2018

Supervised learning



- - dots represent realized (active) synapses
 - ten target groups (with three dendrites each) trained simultaneously
 - 1.5 s wall time needed for emulation

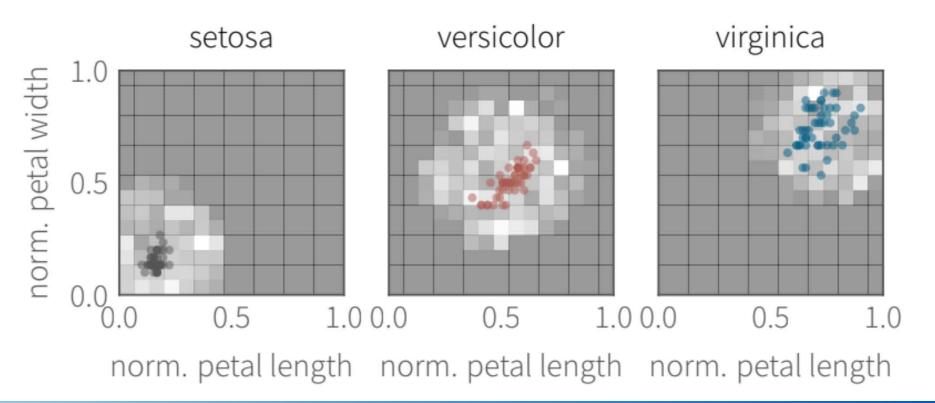
If $\omega \ge \theta_{rand}$: $\omega' \leftarrow \omega$ $+\lambda_{STDP}(c_{+} + c_{-})$ $-\lambda_{hom}(\nu + \nu_{target})$ $a' \leftarrow a$ else: $\omega' \leftarrow \omega_{init}$ $a' \leftarrow rand(0,8)$

B. Cramer and S. Billaudelle, unpublished work, 2018

Formation of receptive fields with structural plasticity

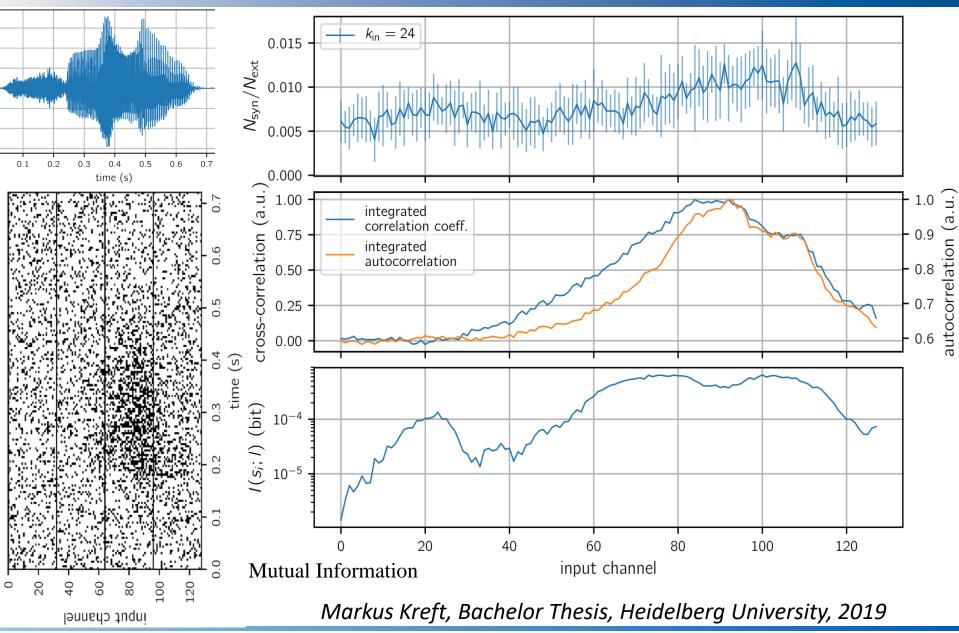
- Iris dataset
- Simple feed-forward network
- only a small fraction of all possible synapses realized
- Synapses are rewired to cover relevant receptor locations
- Self-organized development of receptive fields

Two of four features shown:



B. Cramer and S. Billaudelle, unpublished work, 2018

Auditory stimulus: learning input channel distribution



Heidelberg University

Johannes Schemmel

Conclusions and Outlook

BrainScaleS neuromorphic principles:

- physical model for fast, energy efficient neural network emulation of
 - structured neurons
 - nonlinear effects of dendrites
 - time-continuous emulation of different ion-channel
 - correlation measurement
- closely coupled to SIMD
 - training
 - initialisation
 - configuration
 - debugging
 - calibration
- shared system-wide netwo
 - action potentials
 - memory access for noural routing and CPUs
 - message passir inputs)

or many, many years ...

Juring

Non Juring

