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Turing or Non-Turing ?
That Is The Question

how the BrainScaleS 2nd generation architecture
proposes some answers that support the quest of

bio-inspired artificial intelligence
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Bio-inspired artificial intelligence (Bio-AI)

REALIZING future computing 
based on biological 

information processing

understanding biological 
information processing

artificial system inspired by neuroscience

Bio-AI hardware based on spike-based neuromorphic computing

• model imprinted into hardware (rather than being simulated)
• goal: overcoming the power wall of Turing-based computing
• find local learning rules
• a lot of unknowns:

• classical AI (DCNN) heavily relies on numerical precision for training
• novel devices not yet available 
• CMOS best option, but still very-expensive for research groups
• no spike-based algorithms for application-level performance (hen-and-egg problem)
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Neuromorphic computing with physical model systems

Consider a simple 
physical model for the 
neuron’s cell membrane 
potential V:

( )VEg
dt
dVC −= leakleakm
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R = 1/gleak

Eleak

V(t)

 accelerated neuron model
dt
dV

dt
dV

VLSIbio
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• continuous time
• fixed acceleration factor (we use 103 to 105)

• no multiplexing of components storing model variables
• each neuron has its membrane capacitor
• each synapse has a physical realization
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The Heidelberg BrainScaleS physical model systems
BrainScaleS 1: wafer-scale Neuromorphic system
introduced:
• wafer-scale event-communication
• AdEx neuron with >10k inputs

2020

BrainScaleS 2: hybrid plasticity
introduced:
• software-controlled local plasticity
• non-linear dendrites and structured 

neurons
2010
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Human Brain Project – Benchmarking NMC
solving constraint satisfaction problems with spiking neurons

slide taken from University Bielefeld presentation by Christoph Ostrau at SP9 meeting, Graz ´19
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Stochastic model example: sampling from multiple neural Boltzmann machines
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Observations

• Non-Turing physical model can autonomously, fast and power-efficient replicate 
learned distributions

• As previously demonstrated (NICE 17), same is true for DCNN-inference

Turing-based computing is used in multiple places in these experiments
• training
• system initialization
• hardware calibration
• runtime control
• input/output data handling

Add classical, Turing-based system
to analog NM core?

Why not the other way round?
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memory
controller

high-bw link

NOC

Analog neuromorphic system as co-processor

high-bandwidth link:
vector unit  NM core
• weights
• correlation data
• routing topology
• event (spikes) IO
• configuration

processor
vector unit

analog 
core

high-bw
link

cacheNOC
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processor
vector unit
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processor
vector unit

analog core

high-bw link

cacheNOC

special function tile:
• memory controller
• SERDES IO
• purely digital function unit

Network-on-chip:
• prioritize event data
• unused bw for CPU
• common address 

space for neurons and 
CPUs
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BrainScaleS 2 (BSS-2): 2nd generation prototype chip

plasticity 
processor

synapse 
array

neuron 
circuits

FPGA based 
controller 
board
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BSS-2 uses tightly coupled Turing and Non-Turing compute parts for hybrid plasticity

SIMD Plasticity Processing Unit

ADC array
parallel conversion of STDP readout

synapse array

32 vector slices
. . .
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Concept of hybrid plasticity operation

• analog correlation measurement in synapses
• A/D conversion by parallel ADC
• digital Plasticity Processing Units

→ full access to synaptic weights (𝜔𝜔)
→ full access to configuration data (adr)
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digital Plasticity 
Processing Unit (PPU)

analog pre-post 
correlation 

measurement

• local plasticity loop on the chip
• continuous weight update 

during network operation
• algorithm can use

• neuron firing rates
• compartmental voltages
• temporal correlations
• neuromodulatory signals

Summary: learning and plasticity with hybrid plasticity
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• 65nm LP-CMOS, power consumption O(10 pJ/synaptic event)
• 128k synapses
• 512 neural compartments
• two SIMD plasticity processing units
• fast ADC for membrane voltage monitoring
• 256k correlation sensors with analog storage (> 10 Tcorr/s max)

• 1024 ADC channels for plasticity input variables
• 32 Gb/s neural event IO
• 32 Gb/s local entropy for stochastic neuron operation
• current prototype not operational due to incomplete production 

database checking at the manufacturer
 rerun pending

BrainScaleS 2 full-size prototype chip
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Stabilizing firing rates with spike time dependent plasticity

Wall-time per trace: 200ms 
 acceleration factor of 1000

David Stöckel, Master Thesis, 
Heidelberg University, 2017

presynaptic membrane potential

∆t = tpost – tpre
postsynaptic membrane potential

time
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Stability analysis for plasticity rules

each data point is full plasticity experiment covering 200s biological real time

Measure the plasticity parameter phase space
David Stöckel, Master Thesis, 
Heidelberg University, 2017
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• reinforcement learning rule
• learning is calibration
• experiment runs completely on 

internal PPU
• 5s for 10k iterations

network time 0.4ms/iteration
23 µJ total chip energy

Learning Pong – tech demo using internal PPU only

Wunderlich et.al., Demonstrating Advantages …, Front. Neurosci., 2019
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Structural Plasticity

1

2

3
5
4

7
8

6
9

2
3

54
7

86

9

PPU

pr
e-

sy
na

pt
ic

 in
pu

t

• assign random pre-synaptic 
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• evaluate correlation
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Structural Plasticity
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Structural Plasticity
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• keep the best

repeat



Kirchhoff Institute for PhysicsJohannes SchemmelHeidelberg University 20

Structural Plasticity
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Structural Plasticity
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• assign random pre-synaptic 
neurons

• evaluate correlation
• keep the best
• replace weakly correlating 

synapses constantly against 
random new ones
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Experimental Example : Structural Plasticity
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• 256 pre-synaptic inputs 
mapped to single dendrite 
with 32 active synapses

• plasticity rule combines 
structural, STDP and 
homeostatic terms:

B. Cramer and S. Billaudelle, 
unpublished work, 2018

256

32
if 𝜔𝜔 ≥ 𝜃𝜃rand:
𝜔𝜔𝜔 ← 𝜔𝜔

+𝜆𝜆STDP 𝑐𝑐+ + 𝑐𝑐−
−𝜆𝜆hom 𝜈𝜈 + 𝜈𝜈target

𝑎𝑎𝜔 ← 𝑎𝑎
else:
𝜔𝜔𝜔 ← 𝜔𝜔init
𝑎𝑎𝜔 ← rand(0,8)
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Supervised learning

• 256 pre-synaptic inputs 
mapped to single dendrite 
with 32 active synapses

• plasticity rule combines 
structural, STDP and 
homeostatic terms:

B. Cramer and S. Billaudelle, 
unpublished work, 2018

if 𝜔𝜔 ≥ 𝜃𝜃rand:
𝜔𝜔𝜔 ← 𝜔𝜔

+𝜆𝜆STDP 𝑐𝑐+ + 𝑐𝑐−
−𝜆𝜆hom 𝜈𝜈 + 𝜈𝜈target

𝑎𝑎𝜔 ← 𝑎𝑎
else:
𝜔𝜔𝜔 ← 𝜔𝜔init
𝑎𝑎𝜔 ← rand(0,8)

• dots represent realized (active) synapses
• ten target groups (with three dendrites each) 

trained simultaneously
• 1.5 s wall time needed for emulation
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Supervised learning

• 256 pre-synaptic inputs 
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Formation of receptive fields with structural plasticity

• Iris dataset
• Simple feed-forward network
• only a small fraction of all possible synapses realized
• Synapses are rewired to cover relevant receptor locations
• Self-organized development of receptive fields
Two of four features shown:

B. Cramer and S. Billaudelle, 
unpublished work, 2018
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Auditory stimulus: learning input channel distribution

Mutual Information

Markus Kreft, Bachelor Thesis, Heidelberg University, 2019
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Conclusions and Outlook
BrainScaleS neuromorphic principles:

• physical model for fast, energy efficient neural network emulation of
• structured neurons
• nonlinear effects of dendrites
• time-continuous emulation of different ion-channels
• correlation measurement

• closely coupled to SIMD unit for
• training
• initialisation
• configuration
• debugging
• calibration

• shared system-wide network
• action potentials
• memory access for neural routing and CPUs
• message passing (i.e. Neuromodulation, non-spiking sensory 

inputs) for many, many years …
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