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Motivation
• Memristors Avenue for low-power 

neuromorphic hardware

• Previous work proposes voltage-driven 
crossbars for neural network weight matrices2,3

brain⋅lab

1C. Merkel et al., “Neuromemristive systems:  Boosing efficiency  through  brain-inspired computing,”IEEE Computer, October 2016.
2G. Indiveri et al., “Integration of nanoscale memristor synapses in neuromorphic computingarchitectures,”Nanotechnology, 2013.
3G. W. Burr et al., “Neuromorphic computing using non-volatilememory,”Advances in Physics: X, vol. 2, no. 1, pp. 89–124, 2017.
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Motivation
• Voltage-mode neurons driving memristor

crossbars suffer from a few drawbacks:
‒ Large memristor conductances Neuron output 

degradation
‒ IR drop over long-distance communication pathways

• Some solutions:  1T1R, spiking networks
• Current-mode designs offer

‒Better input/output swing, reduced loading issues
‒ Low voltage operation and higher bandwidth
‒Nice design techniques (e.g. translinear principle)

brain⋅lab

Can we operate a memristor crossbar in current mode (current 
in, current out) for neuromorphic computing?
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• Memristor = “Memory + Resistor”
‒ 2-Terminal thin-film device with state-dependent 

Ohm’s Law (Chua, 2011)

Overview of Memristor Devices

Top Electrode
(Metal)

Switching Layer
(Insulator)

Bottom Electrode
(Metal)

Metal MetalInsulator

Fermi
Level Fermi

Level

𝒒𝒒𝒗𝒗𝒎𝒎

𝐷𝐷
𝑎𝑎

Vacuum
Level

= Electron
= Defect

Memristors

Metric Flash PCM STT-RAM RRAM Targets

Dynamic
Range

- >1000 2 1000 >4

Number of 
States

8-16 100 4 100 20-100

Retention Several years at room temp. Years

Energy
(pJ/bit)

>100 2-25 0.1-2.5 0.1-3 0.01

Endurance 
(cycles)

104 109 1015 1012 109

𝑖𝑖𝑚𝑚 = 𝐺𝐺𝑚𝑚 𝛾𝛾 𝑣𝑣𝑚𝑚

𝑣𝑣𝑚𝑚
𝐺𝐺𝑚𝑚(𝛾𝛾)

Table compiled from (Yang et al., 2013; Kuzum et al., 2013; Devised et al., 2013; Ishigaki et al., 20

Similar to Biological Synapses

Facilitate:

1.) Computation
2.) Memory
3.) Learning

brain⋅lab
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Voltage-Mode Memristor Xbar
• Matrix-vector multiplication 

implemented by xbar as
𝐬𝐬 = 𝐖𝐖𝐖𝐖

• Each weight is defined by a 
single memristor
conductance

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝐺𝐺𝑖𝑖𝑖𝑖/𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚

• Weight range
𝑔𝑔 ≤ 𝑤𝑤𝑖𝑖𝑖𝑖 ≤ 1

where 𝑔𝑔 ≡ 𝐺𝐺𝑚𝑚𝑖𝑖𝑚𝑚/𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚

brain⋅lab



www.rit.edu/brainlab 9Cory Merkel

Current-Mode Memristor Xbar
• The weight definition 

becomes:

𝑤𝑤𝑖𝑖𝑖𝑖 =
𝐺𝐺𝑖𝑖𝑖𝑖

∑𝑘𝑘=1𝑀𝑀 𝐺𝐺𝑘𝑘𝑖𝑖

• The maximum driving 
current should be

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑉𝑉𝑡𝑡𝑡�
𝑖𝑖

𝐺𝐺𝑖𝑖𝑖𝑖

to avoid read disturb

brain⋅lab
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• Weight range depends on the fanout:
1

𝑀𝑀 − 1 𝑔𝑔 + 1
≤ 𝑤𝑤𝑖𝑖𝑖𝑖 ≤

𝑔𝑔
𝑀𝑀 − 1 + 𝑔𝑔

• Range approaches [0,1] for large 𝑔𝑔
• May need to split into multiple crossbars for very 

large 𝑀𝑀

Weight Range 
brain⋅lab
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Weight Distribution
• Constraint:  Weights in a column 

must sum to 1

• Given a target weight matrix 𝐖𝐖,
find closest constrained matrix 𝐖𝐖

brain⋅lab

� = 1 � = 1 � = 1

minimize �
𝑖𝑖=1

𝑀𝑀

�
𝑖𝑖=1

𝑁𝑁

𝑤𝑤𝑖𝑖𝑖𝑖 − 𝑤𝑤𝑖𝑖𝑖𝑖
2

s. t. �
𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖 = 1 ∀ 𝑗𝑗 = 1,2, … ,𝑁𝑁

𝑤𝑤𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝑤𝑤𝑖𝑖𝑖𝑖 ≤ 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚

𝑤𝑤𝑖𝑖𝑖𝑖 =
1
𝑀𝑀

1 −�
𝑘𝑘=1

𝑀𝑀

𝑤𝑤𝑘𝑘𝑖𝑖 + 𝑤𝑤𝑖𝑖𝑖𝑖

𝐺𝐺𝑖𝑖𝑖𝑖 =
𝑤𝑤𝑖𝑖𝑖𝑖
𝑤𝑤𝑘𝑘𝑖𝑖

𝐺𝐺𝑘𝑘𝑖𝑖
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• Simple perceptron trained to perform AND and
OR logic functions then mapped to current-
mode xbar

• Accuracy:

• Current-mode weight matrix
has large mismatch from target:

Can’t simultaneously control relative and absolute weights in current-mode 

AND-OR Perceptron
brain⋅lab

Voltage-Mode Current-Mode

100%   50%  

Target Current-Mode

0

1
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Addition of Dummy Row
• Dummy row allows magnitude

of entire column to be adjusted
• Now, set weights as:

brain⋅lab

“Dummy” row

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑖𝑖 ∀ 𝑖𝑖 < 𝑀𝑀

𝑤𝑤𝑀𝑀𝑖𝑖 = 1 −�
𝑘𝑘=1

𝑀𝑀

𝑤𝑤𝑘𝑘𝑖𝑖

-1

Target Current-Mode

0

1
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Restrict Target Weights
• Finally, to make sure a target matrix can be 

mapped to the current-mode crossbar:

max
1 −𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚

𝑀𝑀 − 1
,𝑤𝑤𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝑤𝑤𝑖𝑖𝑖𝑖 ≤ min

1 −𝑤𝑤𝑚𝑚𝑖𝑖𝑚𝑚

𝑀𝑀 − 1
,𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚

• The target matrix constraint can be satisfied 
using regularization techniques

brain⋅lab

With these constraints, any voltage-mode crossbar maps 
uniquely to an equivalent current-mode crossbar.
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Bipolar Weights
• We can create bipolar (positive and negative) 

weights without the need for two memristors

• We know the total current from the pre-synaptic 
neurons
‒ Just subtract a fraction of it to get positive and 

negative weights

𝑠𝑠𝑖𝑖 = �
𝑖𝑖=1

𝑁𝑁
𝐺𝐺𝑖𝑖𝑖𝑖

∑𝑘𝑘=1𝑁𝑁 𝐺𝐺𝑘𝑘𝑖𝑖
𝑥𝑥𝑖𝑖 − 𝜃𝜃�

𝑖𝑖=1

𝑁𝑁

𝑥𝑥𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑖𝑖∗ 𝑥𝑥𝑖𝑖

where 𝑤𝑤𝑖𝑖𝑖𝑖∗ = 𝑤𝑤𝑖𝑖𝑖𝑖 − 𝜃𝜃

• Good choice for 𝜃𝜃 is usually 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚+𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚
2

brain⋅lab
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Gradient Descent
• We can train offline using the proposed method, 

but online training is more desirable
• Gradient descent can be implemented as

brain⋅lab

Just use delta rule for non-dummy rows and average the updates for dummy row

Δ𝐺𝐺𝑖𝑖𝑖𝑖𝑙𝑙 = −𝛼𝛼
𝜕𝜕𝜕𝜕
𝜕𝜕𝐺𝐺𝑖𝑖𝑖𝑖𝑙𝑙

= 𝛼𝛼�
𝑘𝑘=1

𝑀𝑀𝑙𝑙

𝛿𝛿𝑘𝑘𝑙𝑙 𝑥𝑥𝑖𝑖𝑙𝑙−1
𝜕𝜕𝑤𝑤𝑘𝑘𝑖𝑖𝑙𝑙

𝜕𝜕𝐺𝐺𝑖𝑖𝑖𝑖𝑙𝑙

≈ �
𝛼𝛼𝛿𝛿𝑖𝑖𝑙𝑙𝑥𝑥𝑖𝑖𝑙𝑙 𝑖𝑖 ≠ 𝑀𝑀

− Δ𝐺𝐺1:𝑀𝑀−1,𝑖𝑖
𝑙𝑙 𝑖𝑖 = 𝑀𝑀

AND/OR Perceptron
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MNIST Experiments
• Circuits modeled in MATLAB based on Ag 

chalcogenide devices1:  
‒ 𝐺𝐺𝑚𝑚𝑖𝑖𝑚𝑚 = 2.1 × 10−5 S
‒ 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 = 1 × 10−3 S

• MLP with 49 inputs, 50 hidden
units, and 10 outputs

• Classification on MNIST handwritten digits 
(60000 train, 10000 test)

brain⋅lab

1A. S. Oblea et al., “Silver Chalcogenide Based Memristor Devices,” Proceedings of the IEEE , vol. 3, 2010.
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• Trained using online backpropagation
‒Delta rule for voltage-mode
‒Derived rule for current-mode

• Similar convergence and final accuracy values

Classification Accuracy
brain⋅lab
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Defect Tolerance
• Defects in the current-mode crossbar (e.g. stuck-

at faults) will affect the weight range of each row 
in the column:

• Results indicate that current-mode design may 
be as robust as voltage-mode
‒More results are needed to verify

brain⋅lab
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Conclusions and Future Work
• Conclusions:

‒Current-mode memristor crossbars may be a viable 
alternative to voltage-mode designs
 Similar training convergence and defect tolerance

‒Some considerations
 Reduced weight range
 Need for a dummy row

• Future work
‒SPICE simulations for power consumption and 

performance analysis
‒Deeper analysis of weight distributions and feature 

extraction

brain⋅lab
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Thank You!
brain⋅lab
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