
Braindrop: A Mixed-Signal
Neuromorphic System that
Presents Clean Abstractions
Kwabena Boahen*  
Bioengineering & Electrical Engineering  
Stanford University  
 
 
 
 
 
*Cofounder & Chief Scientific Adviser, Femtosense Inc.
26 March 2019

Chris Eliasmith

Deep learning is huge
—in the cloud

✤ Backprop learning is powerful

✤ Networks deep in space or time

✤ Space is discretized into layers

✤ Time is discretized into steps

✤ Unit’s output must be
differentiable (with respect to
outputs of units feeding it)

Backprop’s constraints
limit design-space

✤ Cannot take advantage of:

✤ Physical space (its continuous)

✤ Real time (its also continuous)

✤ Non-differentiable signals  
(e.g., spikes)

How do we relax its
constraints? (Part I)

✤ Map functional abstractions onto
physical ones

✤ Two existing examples:

✤ Neural Engineering Framework
(Eliasmith & Anderson 2003)

✤ Predictive Coding Framework
(Deneve et al. 2014)

How do we relax its constraints? (Part II)

✤ Train networks continuous in time
and space

✤ Known as dynamical systems

✤ An existing example:

✤ Neural Ordinary Differential
Equations (Duvenaud et al. 2018)

Neural Ordinary Differential Equations

Ricky T. Q. Chen*, Yulia Rubanova*, Jesse Bettencourt*, David Duvenaud
University of Toronto, Vector Institute

Abstract

We introduce a new family of deep neural network models. Instead of specifying a
discrete sequence of hidden layers, we parameterize the derivative of the hidden
state using a neural network. The output of the network is computed using a black-
box differential equation solver. These continuous-depth models have constant
memory cost, adapt their evaluation strategy to each input, and can explicitly trade
numerical precision for speed. We demonstrate these properties in continuous-depth
residual networks and continuous-time latent variable models. We also construct
continuous normalizing flows, a generative model that can train by maximum
likelihood, without partitioning or ordering the data dimensions. For training, we
show how to scalably backpropagate through any ODE solver, without access to its
internal operations. This allows end-to-end training of ODEs within larger models.

1 Introduction
Residual Network ODE Network

Figure 1: Left: A Residual network defines a
discrete sequence of finite transformations.
Right: A ODE network defines a vector
field, which continuously transforms the state.
Both: Circles represent evaluation locations.

Models such as residual networks, recurrent neural
network decoders, and normalizing flows build com-
plicated transformations by composing a sequence of
transformations to a hidden state:

ht+1 = ht + f(ht, �t) (1)

where t � {0 . . . T} and ht � RD. These iterative
updates can be seen as an Euler discretization of a
continuous transformation (Lu et al., 2017; Haber
and Ruthotto, 2017; Ruthotto and Haber, 2018).

What happens as we add more layers and take smaller
steps? In the limit, we parameterize the continuous
dynamics of hidden units using an ordinary differen-
tial equation (ODE) specified by a neural network:

dh(t)

dt

= f(h(t), t, �) (2)

Starting from the input layer h(0), we can define the output layer h(T) to be the solution to this
ODE initial value problem at some time T . This value can be computed by a black-box differential
equation solver, which evaluates the hidden unit dynamics f wherever necessary to determine the
solution with the desired accuracy. Figure 1 contrasts these two approaches.

Defining and evaluating models using ODE solvers has several benefits:

Memory efficiency In Section 2, we show how to compute gradients of a scalar-valued loss with
respect to all inputs of any ODE solver, without backpropagating through the operations of the solver.
Not storing any intermediate quantities of the forward pass allows us to train our models with constant
memory cost as a function of depth, a major bottleneck of training deep models.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

What’s the payoff? Learning at the edge

✤ Exploit physical
primitives to implement
physical abstractions

✤ Reap dramatic gains in
energy-efficiency

Energy
Harvester Sensors

Data

End User

AlertAlert
Always-

on
Wakeup

Radio

Communicate
BTLE (1% on-time): 280 µW

Sense
Accelerometer: 6 µW

Harvest
Vibration: 500 µW

Compute
Neuroprocessor: 100 µW

1 µW

Minimizing energy

E
op

= N
active

N
conn

= (⇢
active

N)(⇢
conn

N)

Minimizing energy: Temporal sparsity

E
op

= N
active

N
conn

= (⇢
active

N)(⇢
conn

N)

Temporal sparsity: Spikes

E
op

= N
active

N
conn

= (⇢
active

N)(⇢
conn

N)

Minimizing energy: Spatial sparsity

E
op

= N
active

N
conn

= (⇢
active

N)(⇢
conn

N)

Spatial sparsity: Analog convolving

E
op

= N
active

N
conn

= (⇢
active

N)(⇢
conn

N)

1900-1950

1950-????

Make point about top-left corner
being lowest power

Digital versus Analog: 1 day versus 1000 yrs
For Utilitarians

Battery: 10.35Wh

28nm FDSOI
thick oxide transistor

A11 Bionic Processor:
4.3B transistors

2.5 hours

1 day

10 days

100 days

2.74 years

27.4 years

274 years

2747 years

For Utilitarians

Battery: 10.35Wh

28nm FDSOI
thick oxide transistor

A11 Bionic Processor:
4.3B transistors

2.5 hours

1 day

10 days

100 days

2.74 years

27.4 years

274 years

2747 years

28 nm
FDSOI
thick-oxide
transistor

4.3B-transistor processor  
10.35Wh battery

2013 NIPS Demo

Analog Challenge I: Heterogeneity

Silicon neurons’ tuning-curves (Braindrop)

Fig. 2. Tuning Curves Measured from 484 Braindrop Neurons
Top: Spiking thresholds (color coded) and maximum spike-rates widely vary
across the population at a single temperature (26°C). Bottom: As temperature
changes, the thresholds and gains of individual neurons tend to change.

a function of the input x, also known as its tuning curve, is
given by,

aj(x) = G(↵j(ej · x) + �j) (1)

where G is the neuronal transfer-function, which maps in-
put currents to steady-state spike-rates; ↵j is a gain factor;
ej 2 RD is a unit encoding vector that points in the
direction of maximal activation; and �j is a bias. Across a
population of neurons, diversity in encoding vectors, gains, and
biases leads to varied responses, thereby encoding all of the
information from the input signal into time-varying spike-rates
across the population (Fig. 1). On Braindrop, neuronal tuning-
curves resemble ReLU (Rectified Linear Unit) activations with
temperature-dependent biases and gains (Fig. 2).

Tuning curves of an ensemble of neurons are measured
across a range of temperatures to train optimal decode weights.
We discretely sample the input signal x 2 RD at Q points
x1, . . . ,xQ rastered across the input space. The tuning curve
aj 2 RQ of the jth neuron is measured at a particular tempera-
ture T across the discretized inputs such that (aj)k = aj(xk).
We define a tuning-curve matrix AT 2 RQ⇥N such that AT ’s
jth column is the jth neuron’s tuning-curve at temperature T .

An approximation f̂(x) to a target function f(x) : RD ! R
is decoded from an ensemble through a weighted sum of its
neuronal responses (see Fig. 1). The approximation decoded
at temperature T , f̂ 2 RQ, defined on inputs x1, . . . ,xQ, is
given by,

f̂ = ATd (2)

The decode-weight vector d 2 RN is defined such that dj is
the weight applied to the jth neuron’s tuning curve.

Since tuning curves are measured in the presence of random
noise, d is optimized to minimize the function-approximation
error’s expected value. Assuming that the noise is Gaussian

Fig. 3. Decoding f(x) = x

3 Across Temperature
For tuning curves measured from an ensemble of 100 neurons, LS achieves
low error at the training temperature (black star), at the expense of large
error elsewhere (black curve). LSAT, SpLinT (10% of neurons with LinT
weights), LinT, and QuinT each achieve a uniform error across temperature.
Noise regularization � = 0.05 Hz was used for training.

with mean zero and standard deviation �, we define a noise
matrix Z 2 RQ⇥N with elements drawn from N (0,�). Thus,
the decoded function with noise is given by f̂

� = (AT +Z)d.
The expected value of this approximation’s squared-error gives
us the Least Squares (LS) objective function.

JLS = E(||(AT + Z)d� f ||2) (3)

where f 2 RQ is the discretized target function. We can rewrite
this as,

JLS = d

>(A>
TAT + �2QNI)d� 2d>

A

>
T f + f

>
f (4)

making use of the expectations: E(Z>
Z) = �2QNI,

E(Z>
AT) = 0, and E(Z>

f) = 0, where I 2 RN⇥N is the
identity matrix. The L2 noise term �2QNd

>
d penalizes large

decoding weights. We take the gradient of JLS with respect to
d and set the resulting equation to zero, yielding:

d

?
T = (A>

TAT + �2QNI)�1
A

>
T f (5)

The correlation matrix A

>
TAT represents the similarity be-

tween neurons’ tuning curves: (A>
TAT)ij = a

>
i aj is the dot

product of the ith and jth neuron’s tuning curves.
Since d

?
T is trained only at temperature T , error increases

as the temperature deviates from T (Fig. 3). The function
decoded at different temperatures is given by,

ˆ

f(Ti) = ATid and

2

64

ˆ

f(T1)
...

ˆ

f(TR)

3

75 =

2

64
AT1

...
ATR

3

75d (6)

where {ATi}Ri=1 is the set of tuning curve matrices measured
at R different temperatures. This equation can be rewritten as
F̂ = A0d, where A0 2 RRQ⇥N is a matrix of R vertically-
stacked tuning-curve matrices and F̂ 2 RRQ is a vector of R
stacked decoded functions.1 Since ATi varies with temperature
(see Fig. 2), error increases as the temperature deviates from
the training temperature.

1A0 has the subscript 0 because it is used in the case of 0th order in
temperature decode-weights. It is generalized to higher temperature order in
the PinT framework.

484 Braindrop
neurons at 26°C

Fig. 2. Tuning Curves Measured from 484 Braindrop Neurons
Top: Spiking thresholds (color coded) and maximum spike-rates widely vary
across the population at a single temperature (26°C). Bottom: As temperature
changes, the thresholds and gains of individual neurons tend to change.

a function of the input x, also known as its tuning curve, is
given by,

aj(x) = G(↵j(ej · x) + �j) (1)

where G is the neuronal transfer-function, which maps in-
put currents to steady-state spike-rates; ↵j is a gain factor;
ej 2 RD is a unit encoding vector that points in the
direction of maximal activation; and �j is a bias. Across a
population of neurons, diversity in encoding vectors, gains, and
biases leads to varied responses, thereby encoding all of the
information from the input signal into time-varying spike-rates
across the population (Fig. 1). On Braindrop, neuronal tuning-
curves resemble ReLU (Rectified Linear Unit) activations with
temperature-dependent biases and gains (Fig. 2).

Tuning curves of an ensemble of neurons are measured
across a range of temperatures to train optimal decode weights.
We discretely sample the input signal x 2 RD at Q points
x1, . . . ,xQ rastered across the input space. The tuning curve
aj 2 RQ of the jth neuron is measured at a particular tempera-
ture T across the discretized inputs such that (aj)k = aj(xk).
We define a tuning-curve matrix AT 2 RQ⇥N such that AT ’s
jth column is the jth neuron’s tuning-curve at temperature T .

An approximation f̂(x) to a target function f(x) : RD ! R
is decoded from an ensemble through a weighted sum of its
neuronal responses (see Fig. 1). The approximation decoded
at temperature T , f̂ 2 RQ, defined on inputs x1, . . . ,xQ, is
given by,

f̂ = ATd (2)

The decode-weight vector d 2 RN is defined such that dj is
the weight applied to the jth neuron’s tuning curve.

Since tuning curves are measured in the presence of random
noise, d is optimized to minimize the function-approximation
error’s expected value. Assuming that the noise is Gaussian

Fig. 3. Decoding f(x) = x

3 Across Temperature
For tuning curves measured from an ensemble of 100 neurons, LS achieves
low error at the training temperature (black star), at the expense of large
error elsewhere (black curve). LSAT, SpLinT (10% of neurons with LinT
weights), LinT, and QuinT each achieve a uniform error across temperature.
Noise regularization � = 0.05 Hz was used for training.

with mean zero and standard deviation �, we define a noise
matrix Z 2 RQ⇥N with elements drawn from N (0,�). Thus,
the decoded function with noise is given by f̂

� = (AT +Z)d.
The expected value of this approximation’s squared-error gives
us the Least Squares (LS) objective function.

JLS = E(||(AT + Z)d� f ||2) (3)

where f 2 RQ is the discretized target function. We can rewrite
this as,

JLS = d

>(A>
TAT + �2QNI)d� 2d>

A

>
T f + f

>
f (4)

making use of the expectations: E(Z>
Z) = �2QNI,

E(Z>
AT) = 0, and E(Z>

f) = 0, where I 2 RN⇥N is the
identity matrix. The L2 noise term �2QNd

>
d penalizes large

decoding weights. We take the gradient of JLS with respect to
d and set the resulting equation to zero, yielding:

d

?
T = (A>

TAT + �2QNI)�1
A

>
T f (5)

The correlation matrix A

>
TAT represents the similarity be-

tween neurons’ tuning curves: (A>
TAT)ij = a

>
i aj is the dot

product of the ith and jth neuron’s tuning curves.
Since d

?
T is trained only at temperature T , error increases

as the temperature deviates from T (Fig. 3). The function
decoded at different temperatures is given by,

ˆ

f(Ti) = ATid and

2

64

ˆ

f(T1)
...

ˆ

f(TR)

3

75 =

2

64
AT1

...
ATR

3

75d (6)

where {ATi}Ri=1 is the set of tuning curve matrices measured
at R different temperatures. This equation can be rewritten as
F̂ = A0d, where A0 2 RRQ⇥N is a matrix of R vertically-
stacked tuning-curve matrices and F̂ 2 RRQ is a vector of R
stacked decoded functions.1 Since ATi varies with temperature
(see Fig. 2), error increases as the temperature deviates from
the training temperature.

1A0 has the subscript 0 because it is used in the case of 0th order in
temperature decode-weights. It is generalized to higher temperature order in
the PinT framework.

Analog Challenge I: Thermal Sensitivity

3

Fig. 2. Current distribution: For a given V

GS

and T , the current mismatch
⇤ = I

D

/Iµ of 5000 transistor instances biased in the subthreshold regime is
distributed approximately Lognormally, as is seen by plotting this distribution
(model) vs. the empirical (MC) one. To generate these quantile-quantile (Q-
Q) plots, we normalized each ensemble’s samples (I

D

) by its median (Iµ)
to obtain ⇤ for each value of V

GS

. Next, we found the best-fit Lognormal
distribution. We then selected 5000 probability values evenly distributed in the
interval (0, 1) and calculated their corresponding quantiles (i.e., the sample
value at which the fraction of samples is less than the selected value) from both
the empirical distribution’s and the best-fit Lognormal’s CDFs. Plotting these
quantiles against each other yielded the Q-Q plot. The Lognormal distribution
is a good fit across a 300mV range of V

GS

(200mV to 500mV) and a 50

�
C

range of T (0�
C to 50

�
C), except for its tails, which are inaccuratelysampled.

Note that the distribution tightens as temperature increases (lighter dots are
spread less than darker dots). The inset shows the MC distribution’s empirical
PDF (red fills) and the best-fit Lognormal (solid line) at 25

�
C for V

GS

=

500mV.

The V

⇤
t model (3) and a model for �’s temperature depen-

dence explain Iµ’s temperature dependence. The V

⇤
t model

can be used to express I0 in (2) in terms of its value at Tnom:

I0 (T) = I0nom
e

h�1i
(

1� Tnom
T)

�’s temperature dependence is modeled as

� (T) = �1
Tnom

T

+ �2

to match observations from simulations at various VDS. Using
these expressions, Iµ can be written as

Iµ (T) =I0nom
e

h�1i
(

1� Tnom
T)

e

(1�)VBS
UT

⇥ e

VGS
UT

e

(

�1
Tnom

T +�2)�VDS

✓
1 � e

� VDS
UT

◆
(6)

This equation together with (4) provide a compact model
of the combined effect of temperature and mismatch on an
FDSOI transistor’s drain current.

B. Model Fitting

⇤’s and Iµ’s model requires fitting two (�1 and �2) and
five (, I0nom

, h�1i, �1 and �2) parameters, respectively. We

Fig. 3. Current mismatch vs. temperature: ln(⇤)’s standard deviation �

T

(circles) reduces with increasing temperature (0�
C to 50

�
C) across various

V

GS

(150mV to 500mV). This behavior is well captured by our model (blue
lines) for both PMOS (top) and NMOS (bottom) devices (W = 160nm,
L = 450nm). Error bars denote 2.5-97.5 percentiles of �

T

from 10,000
bootstrap iterations. Notice that, empirically, �

T

does not depend strongly on
V

GS

, except for V

GS

= 150mV.

TABLE I
PARAMETER VALUES FOR I

D

’S TEMPERATURE AND MISMATCH MODEL

W = 160nm PMOS NMOS

L (nm) 450 150 450 150

�

1

0.156 0.269 0.165 0.286

�

2

0.0554 0.096 0.049 0.0849

 0.792 0.828

I

0nom (pA) 0.151 1.32 0.205 1.2

h�
1

i 21.0 19.5 20.3 19.0

�

1

0.212 0.457 0.179 0.39

�

2

�0.148 �0.0674 �0.135 �0.0638

obtained fit parameter values for long (L = 450nm) and short
(L = 150nm), NMOS and PMOS devices (Table I). In this
paper, we use the subscripts N and P to differentiate between
NMOS and PMOS devices, and the subscript sc to identify
short-channel devices. We set Tnom = 298.15K.

⇤’s model (4) requires fitting two parameters: �1 and �2.
To get the fit parameter values, we first obtained ID values
from an ensemble of 2500 long and short channel NMOS
and PMOS devices (by simulating UTSOI model [20], [21] in
Spectre) at VGSi = ±0.1, ±0.2, . . . , ±0.5V and Tk = 0, 1,
. . . , 50

�C, for VDS = VDSref
= ±0.5V and for VBS = �1V

(NMOS) and 1V (PMOS). From these 2500 devices’ ID

values,5 we estimated �T at each VGS and T (Fig. 3). We
fit �T to T using (5) to obtain values for �1 and �2 for each
VGS. As the fit parameter values didn’t change significantly
across the VGS range, except for VGS = 100 and 500mV,

5
ln I

D

will have the same standard deviation as ln (I

D

/Iµ) since Iµ is
assumed to be non-random.

4

Fig. 4. NMOS’ and PMOS’ I

0

: I

0

’s temperature dependence obtained from
simulation (points) is well captured by our model’s exponential dependence
(solid line) for both PMOS and NMOS devices. The bottom panel shows the
model’s error relative to the simulation results.

we chose the median values. We repeated this procedure for
10, 000 ensembles, where each ensemble was obtained by
randomly selecting, with replacement, 2500 samples from a
single pool of 5000 mismatched devices. Using the values
from these 10, 000 runs, we calculated �1’s and �2’s median
and confidence intervals.

Iµ’s model (6) requires fitting five parameters: I0nom , h�1i,
, �1 and �2. To get the fit parameter values, we first ob-
tained ID values from non-mismatched simulated NMOS and
PMOS devices at various VGSi = ±0.2, ±0.201, . . . , ±0.4V,
�VDSj = ⌥0.3, ⌥0.35, . . . , 0, . . . , ±0.5V and Tk = 0, 1, . . .,
50

�C, for VDSref
= ±0.5V and for VBS = �1V (NMOS)

and 1V (PMOS). From these ID values, we estimated the fit
parameter values by finding the least squared-error solution to
Ax = y, where

A =

2

666666664

1

Tnom

T0

VGS0

UTnom

Tnom

T0
�VDS0

Tnom

T0
�VDS0

...
...

...
...

...
1

Tnom

Tk

VGSi
UTnom

Tnom

Tk
�VDSj

Tnom

Tk
�VDSj

...
...

...
...

...
1

Tnom

TR

VGSP

UTnom

Tnom

TR
�VDSQ

Tnom

TR
�VDSQ

3

777777775

x =

2

66664

a0

a1



�1

�2

3

77775
and y =

2

6666664

ln Iµ0,0,0

...
ln Iµi,j,k

...
ln IµP,Q,R

3

7777775

The solutions for a0 and a1 yield h�1i =

(1 � ) VBS/UTnom
� a1 and I0nom

= e

a0�h�1i. With
these seven fit parameters, our model matches �T (Fig. 3),
I0 (Fig. 4), drain conductance (Fig. 5) and Iµ (Fig. 6) very
closely across T , �VDS and VGS.

Fig. 5. Drain conductance: Simulated I

D

’s increase with �V

DS

and this
increase’s reduction with T (points) is well matched by our model (solid
line) from 0 to 50

�
C (dark to light colors). The bottom panels show the

model’s error relative to the simulation results; the error is undefined at V

DS

=

V

DSref
= 0.5V because �V

DS

= 0 for this value of V

DS

.

1f

1p

1n

I

µ
(
A

)

T (

�
C)

PMOS

0 10 20 30 40 50

0.0 0.1 0.2 0.3 0.4 0.5

VGS (V)

�5

0

5

%
e
r
r
o
r

NMOS

0.0 0.1 0.2 0.3 0.4 0.5

VGS (V)

Fig. 6. Non-mismatched drain current: Iµ’s dependence on T and V

GS

obtained from simulations (points) is well captured by our model. Iµ’s
dependence on T for different V

GS

values (top half) as well as its dependence
on V

GS

for different T values (bottom half) are shown. The model’s error
relative to the simulation results (lower panels) is mostly within ±5% for T

between 10 and 40

�
C and V

GS

between 100 and 400mV.

4

Fig. 4. NMOS’ and PMOS’ I

0

: I

0

’s temperature dependence obtained from
simulation (points) is well captured by our model’s exponential dependence
(solid line) for both PMOS and NMOS devices. The bottom panel shows the
model’s error relative to the simulation results.

we chose the median values. We repeated this procedure for
10, 000 ensembles, where each ensemble was obtained by
randomly selecting, with replacement, 2500 samples from a
single pool of 5000 mismatched devices. Using the values
from these 10, 000 runs, we calculated �1’s and �2’s median
and confidence intervals.

Iµ’s model (6) requires fitting five parameters: I0nom , h�1i,
, �1 and �2. To get the fit parameter values, we first ob-
tained ID values from non-mismatched simulated NMOS and
PMOS devices at various VGSi = ±0.2, ±0.201, . . . , ±0.4V,
�VDSj = ⌥0.3, ⌥0.35, . . . , 0, . . . , ±0.5V and Tk = 0, 1, . . .,
50

�C, for VDSref
= ±0.5V and for VBS = �1V (NMOS)

and 1V (PMOS). From these ID values, we estimated the fit
parameter values by finding the least squared-error solution to
Ax = y, where

A =

2

666666664

1

Tnom

T0

VGS0

UTnom

Tnom

T0
�VDS0

Tnom

T0
�VDS0

...
...

...
...

...
1

Tnom

Tk

VGSi
UTnom

Tnom

Tk
�VDSj

Tnom

Tk
�VDSj

...
...

...
...

...
1

Tnom

TR

VGSP

UTnom

Tnom

TR
�VDSQ

Tnom

TR
�VDSQ

3

777777775

x =

2

66664

a0

a1



�1

�2

3

77775
and y =

2

6666664

ln Iµ0,0,0

...
ln Iµi,j,k

...
ln IµP,Q,R

3

7777775

The solutions for a0 and a1 yield h�1i =

(1 � ) VBS/UTnom
� a1 and I0nom

= e

a0�h�1i. With
these seven fit parameters, our model matches �T (Fig. 3),
I0 (Fig. 4), drain conductance (Fig. 5) and Iµ (Fig. 6) very
closely across T , �VDS and VGS.

Fig. 5. Drain conductance: Simulated I

D

’s increase with �V

DS

and this
increase’s reduction with T (points) is well matched by our model (solid
line) from 0 to 50

�
C (dark to light colors). The bottom panels show the

model’s error relative to the simulation results; the error is undefined at V

DS

=

V

DSref
= 0.5V because �V

DS

= 0 for this value of V

DS

.

1f

1p

1n

I

µ
(
A

)

T (

�
C)

PMOS

0 10 20 30 40 50

0.0 0.1 0.2 0.3 0.4 0.5

VGS (V)

�5

0

5

%
e
r
r
o
r

NMOS

0.0 0.1 0.2 0.3 0.4 0.5

VGS (V)

Fig. 6. Non-mismatched drain current: Iµ’s dependence on T and V

GS

obtained from simulations (points) is well captured by our model. Iµ’s
dependence on T for different V

GS

values (top half) as well as its dependence
on V

GS

for different T values (bottom half) are shown. The model’s error
relative to the simulation results (lower panels) is mostly within ±5% for T

between 10 and 40

�
C and V

GS

between 100 and 400mV.

4

Fig. 4. NMOS’ and PMOS’ I

0

: I

0

’s temperature dependence obtained from
simulation (points) is well captured by our model’s exponential dependence
(solid line) for both PMOS and NMOS devices. The bottom panel shows the
model’s error relative to the simulation results.

we chose the median values. We repeated this procedure for
10, 000 ensembles, where each ensemble was obtained by
randomly selecting, with replacement, 2500 samples from a
single pool of 5000 mismatched devices. Using the values
from these 10, 000 runs, we calculated �1’s and �2’s median
and confidence intervals.

Iµ’s model (6) requires fitting five parameters: I0nom , h�1i,
, �1 and �2. To get the fit parameter values, we first ob-
tained ID values from non-mismatched simulated NMOS and
PMOS devices at various VGSi = ±0.2, ±0.201, . . . , ±0.4V,
�VDSj = ⌥0.3, ⌥0.35, . . . , 0, . . . , ±0.5V and Tk = 0, 1, . . .,
50

�C, for VDSref
= ±0.5V and for VBS = �1V (NMOS)

and 1V (PMOS). From these ID values, we estimated the fit
parameter values by finding the least squared-error solution to
Ax = y, where

A =

2

666666664

1

Tnom

T0

VGS0

UTnom

Tnom

T0
�VDS0

Tnom

T0
�VDS0

...
...

...
...

...
1

Tnom

Tk

VGSi
UTnom

Tnom

Tk
�VDSj

Tnom

Tk
�VDSj

...
...

...
...

...
1

Tnom

TR

VGSP

UTnom

Tnom

TR
�VDSQ

Tnom

TR
�VDSQ

3

777777775

x =

2

66664

a0

a1



�1

�2

3

77775
and y =

2

6666664

ln Iµ0,0,0

...
ln Iµi,j,k

...
ln IµP,Q,R

3

7777775

The solutions for a0 and a1 yield h�1i =

(1 � ) VBS/UTnom
� a1 and I0nom

= e

a0�h�1i. With
these seven fit parameters, our model matches �T (Fig. 3),
I0 (Fig. 4), drain conductance (Fig. 5) and Iµ (Fig. 6) very
closely across T , �VDS and VGS.

Fig. 5. Drain conductance: Simulated I

D

’s increase with �V

DS

and this
increase’s reduction with T (points) is well matched by our model (solid
line) from 0 to 50

�
C (dark to light colors). The bottom panels show the

model’s error relative to the simulation results; the error is undefined at V

DS

=

V

DSref
= 0.5V because �V

DS

= 0 for this value of V

DS

.

1f

1p

1n

I

µ
(
A

)

T (

�
C)

PMOS

0 10 20 30 40 50

0.0 0.1 0.2 0.3 0.4 0.5

VGS (V)

�5

0

5

%
e
r
r
o
r

NMOS

0.0 0.1 0.2 0.3 0.4 0.5

VGS (V)

Fig. 6. Non-mismatched drain current: Iµ’s dependence on T and V

GS

obtained from simulations (points) is well captured by our model. Iµ’s
dependence on T for different V

GS

values (top half) as well as its dependence
on V

GS

for different T values (bottom half) are shown. The model’s error
relative to the simulation results (lower panels) is mostly within ±5% for T

between 10 and 40

�
C and V

GS

between 100 and 400mV.

✤ A subthreshold transistor’s current (I!) is
exponentially sensitive to temperature

✤ T is the absolute temperature

✤ UT = kT/q is the thermal voltage

✤ Across a 50°C range, the current changes
by 1.5 to 3 decades Benjamin & Boahen 2019

Tuning-curves’ thermal sensitivity (Braindrop)

Fig. 2. Tuning Curves Measured from 484 Braindrop Neurons
Top: Spiking thresholds (color coded) and maximum spike-rates widely vary
across the population at a single temperature (26°C). Bottom: As temperature
changes, the thresholds and gains of individual neurons tend to change.

a function of the input x, also known as its tuning curve, is
given by,

aj(x) = G(↵j(ej · x) + �j) (1)

where G is the neuronal transfer-function, which maps in-
put currents to steady-state spike-rates; ↵j is a gain factor;
ej 2 RD is a unit encoding vector that points in the
direction of maximal activation; and �j is a bias. Across a
population of neurons, diversity in encoding vectors, gains, and
biases leads to varied responses, thereby encoding all of the
information from the input signal into time-varying spike-rates
across the population (Fig. 1). On Braindrop, neuronal tuning-
curves resemble ReLU (Rectified Linear Unit) activations with
temperature-dependent biases and gains (Fig. 2).

Tuning curves of an ensemble of neurons are measured
across a range of temperatures to train optimal decode weights.
We discretely sample the input signal x 2 RD at Q points
x1, . . . ,xQ rastered across the input space. The tuning curve
aj 2 RQ of the jth neuron is measured at a particular tempera-
ture T across the discretized inputs such that (aj)k = aj(xk).
We define a tuning-curve matrix AT 2 RQ⇥N such that AT ’s
jth column is the jth neuron’s tuning-curve at temperature T .

An approximation f̂(x) to a target function f(x) : RD ! R
is decoded from an ensemble through a weighted sum of its
neuronal responses (see Fig. 1). The approximation decoded
at temperature T , f̂ 2 RQ, defined on inputs x1, . . . ,xQ, is
given by,

f̂ = ATd (2)

The decode-weight vector d 2 RN is defined such that dj is
the weight applied to the jth neuron’s tuning curve.

Since tuning curves are measured in the presence of random
noise, d is optimized to minimize the function-approximation
error’s expected value. Assuming that the noise is Gaussian

Fig. 3. Decoding f(x) = x

3 Across Temperature
For tuning curves measured from an ensemble of 100 neurons, LS achieves
low error at the training temperature (black star), at the expense of large
error elsewhere (black curve). LSAT, SpLinT (10% of neurons with LinT
weights), LinT, and QuinT each achieve a uniform error across temperature.
Noise regularization � = 0.05 Hz was used for training.

with mean zero and standard deviation �, we define a noise
matrix Z 2 RQ⇥N with elements drawn from N (0,�). Thus,
the decoded function with noise is given by f̂

� = (AT +Z)d.
The expected value of this approximation’s squared-error gives
us the Least Squares (LS) objective function.

JLS = E(||(AT + Z)d� f ||2) (3)

where f 2 RQ is the discretized target function. We can rewrite
this as,

JLS = d

>(A>
TAT + �2QNI)d� 2d>

A

>
T f + f

>
f (4)

making use of the expectations: E(Z>
Z) = �2QNI,

E(Z>
AT) = 0, and E(Z>

f) = 0, where I 2 RN⇥N is the
identity matrix. The L2 noise term �2QNd

>
d penalizes large

decoding weights. We take the gradient of JLS with respect to
d and set the resulting equation to zero, yielding:

d

?
T = (A>

TAT + �2QNI)�1
A

>
T f (5)

The correlation matrix A

>
TAT represents the similarity be-

tween neurons’ tuning curves: (A>
TAT)ij = a

>
i aj is the dot

product of the ith and jth neuron’s tuning curves.
Since d

?
T is trained only at temperature T , error increases

as the temperature deviates from T (Fig. 3). The function
decoded at different temperatures is given by,

ˆ

f(Ti) = ATid and

2

64

ˆ

f(T1)
...

ˆ

f(TR)

3

75 =

2

64
AT1

...
ATR

3

75d (6)

where {ATi}Ri=1 is the set of tuning curve matrices measured
at R different temperatures. This equation can be rewritten as
F̂ = A0d, where A0 2 RRQ⇥N is a matrix of R vertically-
stacked tuning-curve matrices and F̂ 2 RRQ is a vector of R
stacked decoded functions.1 Since ATi varies with temperature
(see Fig. 2), error increases as the temperature deviates from
the training temperature.

1A0 has the subscript 0 because it is used in the case of 0th order in
temperature decode-weights. It is generalized to higher temperature order in
the PinT framework.

4 Braindrop
neurons for
0 to 38°C

Reid, Montoya, & Boahen 2019

Approximating functions

f (x1)
f (x2)
!

f (xQ)

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

a1(x1) a2(x1) ! aN (x1)
a1(x2) a2(x2) ! aN (x2)
" " # "

a1(xQ) a2(xQ) ! aN (xQ)

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

d1
d2
!
dN

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

f=Ad⇒d= (ATA)−1ATff=Ad⇒d= (ATA)−1ATf

IEE
E P

ro
of

Neckar et al.: Braindrop: A Mixed-Signal Neuromorphic Architecture

Fig. 2. Emulating the nonlinear dynamical system

τ · t f x u t with a SNN. This system’s dynamics are

matched by the SNN’s state vector, x(t), when assigning Di and c(t)

are assigned such that i Di δxi ≈ τ /τ f x x (after synaptic

filtering) and c t τ /τ u t . Branches of soma’s dendrite and

axon realize weighting. Line thickness depicts weight magnitude.

Sign may be positive (green line), negative (purple line), or zero

(gray line).

synapses interconnected via dendrites and axons. A soma
is viewed as implementing a static nonlinear function,
whose argument is a continuous current and whose value
is the soma’s spike train. A synapse is viewed as the
implementing leaky integration (i.e., low-pass temporal
filtering), thereby converting these spike trains back into a
continuous current. A differential equation’s state variable
(x), which may be multidimensional, is represented by
a vector of d current signals. The equation specifies a
transformation [f(x)] of this vector of d input current
signals into another vector of d output current signals. This
transformation is realized—and temporally integrated—by
a collection (or pool) of N somas and d synaptic filters in
four steps (see Fig. 2).

First, differently weighted sums of the d input currents
are fed into each of the N somas (one per soma), a linear
mapping known as encoding. Based on its particular
weighting, each soma in the pool will provide a stronger
response for a particular set of input vectors. A soma
is excited (receives positive current) when the vector
points in its preferred direction, and it is inhibited
(receives negative current) when it points away. The NEF
chooses these directions—specified by encoding vectors—
randomly to ensure that all directions are represented
with equal probability.

Second, these N current inputs are transformed by the
somas’ static nonlinearities into N spike trains, a pointwise

nonlinear mapping. Before passing the input current
through its static nonlinearity, each soma scales it by a
gain and adds a bias current. The NEF assigns somas gains
and biases drawn from a wide distribution, resulting in a
heterogenous set of nonlinearities. Compounded with their
randomly drawn encoding vectors, the somas’ nonlinear
responses 1

m called tuning-curves 1
m form a dissimilar and

overcomplete basis set for approximating the arbitrary
multidimensional transformations of the input vector.

Third, these N spike trains are converted into d
weighted sums, another linear mapping known as decod-
ing. For the weights, a decoding vector is assigned to each
soma by solving a least-squares optimization problem (see
Fig. 3). When each spike is viewed as a delta function with
unit area, replacing it with a delta function with area equal
to a component of the decoding vector and merging the
resulting delta trains together yields the desired weighted
sum for one of the d dimensions.

Finally, the synaptic filters’ leaky integration is cleverly
exploited to integrate the transformed vector, a critical
difference between the NEF, and other random-projection
networks, such as Extreme Learning Machines [14]–[16],
which cannot realize a dynamic transformation. This oper-
ation is accomplished by feeding the merged, scaled delta
trains to the synaptic filters and adding their d output
currents to the d input currents through (recurrent) feed-
back connections (see Fig. 2). Thus, nonlinear differential
equations of arbitrary order may be implemented by a
single pool [13].

More elaborate computations are first decomposed into
a coupled system of differential equations, and then, each
one is implemented by one of an interconnected set of
pools. These pools are interconnected by linking one pool’s
decoder to another pool’s encoder to form large network
graphs. Linear transforms may be placed between decoders
and encoders (see Fig. 4). The resulting SNN’s connectivity
is defined by encoding vectors, decoding vectors, and

Fig. 3. Transformation y / πx (black curve) is

approximated by y AD (yellow curve), where each of A’s columns

represent a single neuron’s spike rates over x’s range (blue curve

for negative- and red curve for positive preffered directions) and D

is a vector of decoding weights, or, more generally, a matrix of

decoding vectors. D is obtained by solving for

argminD ||AD − y || λ||D|| . To produce each panel, a basis pursuit is

first performed on 1024 neurons’ tuning curves collected from

Braindrop to select the best sets of 3, 8, and 30 neurons’ responses

to form A, thereby demonstrating the effect of using more neurons

on performance. Error bars represent 10th and 90th percentiles

when sampling for 0.3 s/point.

PROCEEDINGS OF THE IEEE 3

3 to 30
Braindrop
neurons at

26°C

✤ The desired function f(x) is expressed as a
weighted sum of the neural tuning curves ai(x)

✤ The weights—called decoders—are labeled di

Thermally robust computation (Braindrop)

Fig. 5. Decoding H0’s Eigenfunctions with LSAT and LinT Weights
With tuning-curve data from an ensemble of 256 Braindrop neurons, we
decoded eigenfunctions h1, h2, and h5 (dotted lines) of H0 (the LSAT error
operator) across a 38°C range using LSAT decode-weights (top), and LinT
decode-weights (bottom). As the eigenfunction’s order increases, it is approx-
imated at test temperatures (colored lines) less accurately (larger deviation
from dotted line) and less robustly across temperature (larger spread across
curves). LinT achieves slightly more accurate and robust approximations.

Cn has elements (Cn)kl =
PR

i=1 T
n
i a

>
k (Ti)al(Ti) given by

the sum over temperature of the dot-product of the tuning
curves for neurons k and l, scaled by the nth power of
temperature.

The generalized noise-regularization matrix BP is composed
of N ⇥N submatrices Bn, arranged in a block-Hankel form
similar to CP .

BP =

2

6664

B0 B1 . . . BP

B1 B2 . . . BP+1
...

...
. . .

...
BP BP+1 . . . B2P

3

7775
where Bn =

Z>TnZ
�2

(17)
Thus, Bn = QN

PR
i=1 T

n
i I where I is the N -dimensional

identity matrix.
Finally, the generalized average tuning-curve matrix WP =

A>
PG is a vertically stacked matrix of matrices W0, . . . ,WP ,

where Wn 2 RN⇥Q is given by Wn =
PR

i=1 T
n
i A

>
Ti

.
The optimal decode-coefficient vector, D?

P , which mini-
mizes JPinT, extends the LSAT solution d

?
LSAT to polynomial-

order decode-weights;

D?
P = (CP + �2BP)

�1WP f (18)

In the case where P = 0, we have that C0 = A>
0 A0, B0 =

QNRI, and W0 = A>
0 G. Hence, JPinT reduces to JLSAT and

D?
P reduces to d

?
LSAT when P = 0 (see equations 8, 9, 14, and

18).

IV. PINT ERROR OPERATOR

We construct an operator HP that directly measures the
average squared function-approximation error for a target
function f , and can be defined separately for testing and

Fig. 6. Test Error Across H0’s Eigenfunctions
Using Braindrop tuning curve measurements, we decoded H0’s eigenfunctions
using LSAT (solid lines) and LinT (dashed lines) weights for different-
sized ensembles. For each eigenfunction, we tuned the noise regularization
parameter � to an optimal value that minimized test error. Optimal values of
� ranged between 0.01 Hz and 0.5 Hz.

training data. HP 2 RQ⇥Q measures the squared error on
a target function f 2 RQ through a scaled inner-product,

f

>HP f =
1
R ||F̂?

f �Gf ||2 (19)

where F̂?
f is the stacked vector of decoded functions at each

temperature yielded by D?
P , the optimized PinT decode-vector

for f . We reserve certain temperature measurements as a test
set while the remaining measurements comprise the training
set.

The test-error operator is derived by substituting Dtr?
P , de-

fined on the training set with noise regularization �, into JPinT,
defined on the test set without noise regularization. It is given
by,

Hte
P = I+ 1

Rte

⇣
Wtr>

P Ctr�1
P,� Cte

P,0C
tr�1
P,� Wtr

P�

Wtr>
P Ctr�1

P,� Wte
P �Wte>

P Ctr�1
P,0 Wtr

P

⌘
(20)

Here, I is the Q-dimensional identity matrix and we use the
compact notation CP,� = CP + �2BP . The training-error
operator is obtained by setting Cte

P,0 = Ctr
P,0, Wte

P = Wtr
P ,

and Rte = Rtr in the expression above.
The error for a given function f can be expressed in

terms of its projection onto HP ’s eigenfunctions, weighted
by their eigenerrors. HP ’s eigendecomposition is given by
HP =

PQ
i=1 ✏ih

>
i hi where {hi}Qi=1 is a set of normalized

eigenfunctions and {✏i}Qi=1 is a set of eigenerrors. The eigen-
error ✏i gives the squared-error decoding hi,

✏i = h

>
i Hhi =

1
R ||F̂?

hi
�Ghi||2 (21)

Projecting a normalized function f 2 RQ onto HP ’s eigen-
function space as f =

PQ
i=1 cihi, where ci = f

>
hi, yields its

function-approximation error,
1
R ||F̂?

f �Gf ||2 =
PQ

i=1 c
2
i ✏i (22)

Fig. 5. Decoding H0’s Eigenfunctions with LSAT and LinT Weights
With tuning-curve data from an ensemble of 256 Braindrop neurons, we
decoded eigenfunctions h1, h2, and h5 (dotted lines) of H0 (the LSAT error
operator) across a 38°C range using LSAT decode-weights (top), and LinT
decode-weights (bottom). As the eigenfunction’s order increases, it is approx-
imated at test temperatures (colored lines) less accurately (larger deviation
from dotted line) and less robustly across temperature (larger spread across
curves). LinT achieves slightly more accurate and robust approximations.

Cn has elements (Cn)kl =
PR

i=1 T
n
i a

>
k (Ti)al(Ti) given by

the sum over temperature of the dot-product of the tuning
curves for neurons k and l, scaled by the nth power of
temperature.

The generalized noise-regularization matrix BP is composed
of N ⇥N submatrices Bn, arranged in a block-Hankel form
similar to CP .

BP =

2

6664

B0 B1 . . . BP

B1 B2 . . . BP+1
...

...
. . .

...
BP BP+1 . . . B2P

3

7775
where Bn =

Z>TnZ
�2

(17)
Thus, Bn = QN

PR
i=1 T

n
i I where I is the N -dimensional

identity matrix.
Finally, the generalized average tuning-curve matrix WP =

A>
PG is a vertically stacked matrix of matrices W0, . . . ,WP ,

where Wn 2 RN⇥Q is given by Wn =
PR

i=1 T
n
i A

>
Ti

.
The optimal decode-coefficient vector, D?

P , which mini-
mizes JPinT, extends the LSAT solution d

?
LSAT to polynomial-

order decode-weights;

D?
P = (CP + �2BP)

�1WP f (18)

In the case where P = 0, we have that C0 = A>
0 A0, B0 =

QNRI, and W0 = A>
0 G. Hence, JPinT reduces to JLSAT and

D?
P reduces to d

?
LSAT when P = 0 (see equations 8, 9, 14, and

18).

IV. PINT ERROR OPERATOR

We construct an operator HP that directly measures the
average squared function-approximation error for a target
function f , and can be defined separately for testing and

Fig. 6. Test Error Across H0’s Eigenfunctions
Using Braindrop tuning curve measurements, we decoded H0’s eigenfunctions
using LSAT (solid lines) and LinT (dashed lines) weights for different-
sized ensembles. For each eigenfunction, we tuned the noise regularization
parameter � to an optimal value that minimized test error. Optimal values of
� ranged between 0.01 Hz and 0.5 Hz.

training data. HP 2 RQ⇥Q measures the squared error on
a target function f 2 RQ through a scaled inner-product,

f

>HP f =
1
R ||F̂?

f �Gf ||2 (19)

where F̂?
f is the stacked vector of decoded functions at each

temperature yielded by D?
P , the optimized PinT decode-vector

for f . We reserve certain temperature measurements as a test
set while the remaining measurements comprise the training
set.

The test-error operator is derived by substituting Dtr?
P , de-

fined on the training set with noise regularization �, into JPinT,
defined on the test set without noise regularization. It is given
by,

Hte
P = I+ 1

Rte

⇣
Wtr>

P Ctr�1
P,� Cte

P,0C
tr�1
P,� Wtr

P�

Wtr>
P Ctr�1

P,� Wte
P �Wte>

P Ctr�1
P,0 Wtr

P

⌘
(20)

Here, I is the Q-dimensional identity matrix and we use the
compact notation CP,� = CP + �2BP . The training-error
operator is obtained by setting Cte

P,0 = Ctr
P,0, Wte

P = Wtr
P ,

and Rte = Rtr in the expression above.
The error for a given function f can be expressed in

terms of its projection onto HP ’s eigenfunctions, weighted
by their eigenerrors. HP ’s eigendecomposition is given by
HP =

PQ
i=1 ✏ih

>
i hi where {hi}Qi=1 is a set of normalized

eigenfunctions and {✏i}Qi=1 is a set of eigenerrors. The eigen-
error ✏i gives the squared-error decoding hi,

✏i = h

>
i Hhi =

1
R ||F̂?

hi
�Ghi||2 (21)

Projecting a normalized function f 2 RQ onto HP ’s eigen-
function space as f =

PQ
i=1 cihi, where ci = f

>
hi, yields its

function-approximation error,
1
R ||F̂?

f �Gf ||2 =
PQ

i=1 c
2
i ✏i (22)

256 Braindrop
neurons from
0 to 38°C

Fig. 5. Decoding H0’s Eigenfunctions with LSAT and LinT Weights
With tuning-curve data from an ensemble of 256 Braindrop neurons, we
decoded eigenfunctions h1, h2, and h5 (dotted lines) of H0 (the LSAT error
operator) across a 38°C range using LSAT decode-weights (top), and LinT
decode-weights (bottom). As the eigenfunction’s order increases, it is approx-
imated at test temperatures (colored lines) less accurately (larger deviation
from dotted line) and less robustly across temperature (larger spread across
curves). LinT achieves slightly more accurate and robust approximations.

Cn has elements (Cn)kl =
PR

i=1 T
n
i a

>
k (Ti)al(Ti) given by

the sum over temperature of the dot-product of the tuning
curves for neurons k and l, scaled by the nth power of
temperature.

The generalized noise-regularization matrix BP is composed
of N ⇥N submatrices Bn, arranged in a block-Hankel form
similar to CP .

BP =

2

6664

B0 B1 . . . BP

B1 B2 . . . BP+1
...

...
. . .

...
BP BP+1 . . . B2P

3

7775
where Bn =

Z>TnZ
�2

(17)
Thus, Bn = QN

PR
i=1 T

n
i I where I is the N -dimensional

identity matrix.
Finally, the generalized average tuning-curve matrix WP =

A>
PG is a vertically stacked matrix of matrices W0, . . . ,WP ,

where Wn 2 RN⇥Q is given by Wn =
PR

i=1 T
n
i A

>
Ti

.
The optimal decode-coefficient vector, D?

P , which mini-
mizes JPinT, extends the LSAT solution d

?
LSAT to polynomial-

order decode-weights;

D?
P = (CP + �2BP)

�1WP f (18)

In the case where P = 0, we have that C0 = A>
0 A0, B0 =

QNRI, and W0 = A>
0 G. Hence, JPinT reduces to JLSAT and

D?
P reduces to d

?
LSAT when P = 0 (see equations 8, 9, 14, and

18).

IV. PINT ERROR OPERATOR

We construct an operator HP that directly measures the
average squared function-approximation error for a target
function f , and can be defined separately for testing and

Fig. 6. Test Error Across H0’s Eigenfunctions
Using Braindrop tuning curve measurements, we decoded H0’s eigenfunctions
using LSAT (solid lines) and LinT (dashed lines) weights for different-
sized ensembles. For each eigenfunction, we tuned the noise regularization
parameter � to an optimal value that minimized test error. Optimal values of
� ranged between 0.01 Hz and 0.5 Hz.

training data. HP 2 RQ⇥Q measures the squared error on
a target function f 2 RQ through a scaled inner-product,

f

>HP f =
1
R ||F̂?

f �Gf ||2 (19)

where F̂?
f is the stacked vector of decoded functions at each

temperature yielded by D?
P , the optimized PinT decode-vector

for f . We reserve certain temperature measurements as a test
set while the remaining measurements comprise the training
set.

The test-error operator is derived by substituting Dtr?
P , de-

fined on the training set with noise regularization �, into JPinT,
defined on the test set without noise regularization. It is given
by,

Hte
P = I+ 1

Rte

⇣
Wtr>

P Ctr�1
P,� Cte

P,0C
tr�1
P,� Wtr

P�

Wtr>
P Ctr�1

P,� Wte
P �Wte>

P Ctr�1
P,0 Wtr

P

⌘
(20)

Here, I is the Q-dimensional identity matrix and we use the
compact notation CP,� = CP + �2BP . The training-error
operator is obtained by setting Cte

P,0 = Ctr
P,0, Wte

P = Wtr
P ,

and Rte = Rtr in the expression above.
The error for a given function f can be expressed in

terms of its projection onto HP ’s eigenfunctions, weighted
by their eigenerrors. HP ’s eigendecomposition is given by
HP =

PQ
i=1 ✏ih

>
i hi where {hi}Qi=1 is a set of normalized

eigenfunctions and {✏i}Qi=1 is a set of eigenerrors. The eigen-
error ✏i gives the squared-error decoding hi,

✏i = h

>
i Hhi =

1
R ||F̂?

hi
�Ghi||2 (21)

Projecting a normalized function f 2 RQ onto HP ’s eigen-
function space as f =

PQ
i=1 cihi, where ci = f

>
hi, yields its

function-approximation error,
1
R ||F̂?

f �Gf ||2 =
PQ

i=1 c
2
i ✏i (22)

Reid, Montoya, & Boahen 2019

NEF: Decode-Transform-Encode
Eliasmith & Anderson 2003

Digital thinning and analog convolving

Braindrop: 4096 neurons
in 28nm FDSOI CMOS

2

▪ Pictures after Wire Bonding

Full Top View Full Die View

2 mm

2

▪ Pictures after Wire Bonding

Full Top View Full Die View

Programming Environment (Nengo)

IEE
E P

ro
of

Neckar et al.: Braindrop: A Mixed-Signal Neuromorphic Architecture

signaling in space. This complementary relationship
between analog dendritic signaling and digital axonal
signaling is completely lost in traditional ANN implemen-
tations that replace discrete spike trains by continuous
rates, dynamic neuronal behavior with static point nonlin-
earities, and spatially organized neuron arrays mimicking
BNNs’ local connectivity with globally connected neurons.

The price to be paid for mimicking the BNNs’
energy-efficient mixed-signal approach with modern
CMOS process technology is the uncertainty in manu-
facturing. This uncertainty results in exponentially mis-
matched responses and thermal variability in analog (i.e.,
physically realized) neuron circuits. Because these circuits
are not time-multiplexed, they must be sized as small as
possible to maximize neuron count, and because these
circuits constantly conduct their bias current, they must be
biased with as little current as possible to minimize (sta-
tic) power consumption. However, these two requirements
make designing analog circuits in modern CMOS processes
even more challenging; smaller transistors have more mis-
matched threshold voltages, and minuscule currents are
exponentially sensitive to this mismatch [2] as well as to
the ambient temperature [3].

Thus, while using analog signaling promises energy
efficiency because of its potential to sparsify the digital
communication in space and time, analog circuits’ inher-
ent heterogeneity and variability impede programmabil-
ity and reproducibility. This heterogeneity and variability
are directly exposed to the user when the mixed-signal
neuromorphic systems are programmed at the level of
individual neuronal biases and synaptic weights [4]–[6].
Because each chip is different, for a given computation,
each must be configured differently. In addition, the silicon
neurons inherit their transistors’ thermal variation, requir-
ing further fine-tuning of programming parameters. This
lack of abstraction and reproducibility limits adoption to
experts who understand the hardware at the circuit level.
To ease programmability and guarantee reproducibility,
some recent large-scale neuromorphic systems adopt an
all-digital approach [7], [8].

This paper presents Braindrop (see Fig. 1), the first
mixed-signal neuromorphic system designed with a clean
set of mismatch- and temperature-invariant abstrac-
tions in mind. Unlike previous approaches for analog
computation [9]–[12], which use fewer, bigger analog cir-
cuits biased with large currents to minimize mismatch (and
its associated thermal variation), Braindrop’s hardware
and software embrace mismatch, working in concert to
harness the inherent variability in its analog electronics to
perform computation, thereby presenting a clean abstrac-
tion to the user. Orchestrating hardware and software
automatically is enabled by raising the level of abstraction
at which the user interacts with the neuromorphic system.

The user describes their computation as a system of
nonlinear differential equations, agnostic to the underly-
ing hardware. Automated synthesis proceeds by charac-
terizing the hardware and implementing each equation
using a group of neurons that are physically colocated

Fig. 1. Mapping a computation onto Braindrop. (a) Desired

computation is described as a system of coupled dynamical

equations. (b) NEF describes how to synthesize each

subcomputation using a pool of dynamical neurons. (c) User uses

Nengo, the NEF’s Python-based programming environment,

to translate the equations into a network of pools. (d) Computation

is implemented on Braindrop (blue outer outline indicates the

package; inner outline indicates the die’s core circuitry). Nengo

communicates with Braindrop through its driver software to provide

a real-time interface.

(called a pool). This computing paradigm, theoretically
underpinned by the Neural Engineering Framework
(NEF) [13], is not only tolerant of, but also reliant on,
mismatch; neuron responses form a set of basis functions
that must be dissimilar and overcomplete. Dissimilarity
enables arbitrary functions of the input space to be approx-
imated by a linear transform. Overcompleteness ensures
that the solutions exist in the null-space of the set’s thermal
variation. Thus, these two properties enable us to abstract
the analog soma and synapse circuits’ idiosyncrasies away.

Section II briefly reviews the NEF, the level of abstrac-
tion at which a user interacts with the Braindrop sys-
tem. Section III highlights accumulative thinning and
sparse encoding, novel hardware implementations of
the NEF’s linear decoding and encoding that sparsify
digital communication in time and space, respectively.
Section IV describes Braindrop’s architecture and dis-
cusses its hardware implementation and software sup-
port. Section V characterizes and validates the hardware’s
decoding and encoding operations. Section VI demon-
strates the performance of several example applications
currently running on the Braindrop. Section VII intro-
duces an energy-efficient metric for spiking neural net-
work (SNN) architectures with different connectivities—
energy per equivalent synaptic operation—and determines
it for Braindrop over varying operating configurations.
Section VIII compares Braindrop’s energy and area efficien-
cies with other SNN architectures. Section IX presents our
conclusions.

II. N E U R A L E N G I N E E R I N G F R A M E W O R K

The NEF provides a way to translate a computation spec-
ified as a differential equation into a network of somas and

2 PROCEEDINGS OF THE IEEE

IEE
E P

ro
of

Neckar et al.: Braindrop: A Mixed-Signal Neuromorphic Architecture

signaling in space. This complementary relationship
between analog dendritic signaling and digital axonal
signaling is completely lost in traditional ANN implemen-
tations that replace discrete spike trains by continuous
rates, dynamic neuronal behavior with static point nonlin-
earities, and spatially organized neuron arrays mimicking
BNNs’ local connectivity with globally connected neurons.

The price to be paid for mimicking the BNNs’
energy-efficient mixed-signal approach with modern
CMOS process technology is the uncertainty in manu-
facturing. This uncertainty results in exponentially mis-
matched responses and thermal variability in analog (i.e.,
physically realized) neuron circuits. Because these circuits
are not time-multiplexed, they must be sized as small as
possible to maximize neuron count, and because these
circuits constantly conduct their bias current, they must be
biased with as little current as possible to minimize (sta-
tic) power consumption. However, these two requirements
make designing analog circuits in modern CMOS processes
even more challenging; smaller transistors have more mis-
matched threshold voltages, and minuscule currents are
exponentially sensitive to this mismatch [2] as well as to
the ambient temperature [3].

Thus, while using analog signaling promises energy
efficiency because of its potential to sparsify the digital
communication in space and time, analog circuits’ inher-
ent heterogeneity and variability impede programmabil-
ity and reproducibility. This heterogeneity and variability
are directly exposed to the user when the mixed-signal
neuromorphic systems are programmed at the level of
individual neuronal biases and synaptic weights [4]–[6].
Because each chip is different, for a given computation,
each must be configured differently. In addition, the silicon
neurons inherit their transistors’ thermal variation, requir-
ing further fine-tuning of programming parameters. This
lack of abstraction and reproducibility limits adoption to
experts who understand the hardware at the circuit level.
To ease programmability and guarantee reproducibility,
some recent large-scale neuromorphic systems adopt an
all-digital approach [7], [8].

This paper presents Braindrop (see Fig. 1), the first
mixed-signal neuromorphic system designed with a clean
set of mismatch- and temperature-invariant abstrac-
tions in mind. Unlike previous approaches for analog
computation [9]–[12], which use fewer, bigger analog cir-
cuits biased with large currents to minimize mismatch (and
its associated thermal variation), Braindrop’s hardware
and software embrace mismatch, working in concert to
harness the inherent variability in its analog electronics to
perform computation, thereby presenting a clean abstrac-
tion to the user. Orchestrating hardware and software
automatically is enabled by raising the level of abstraction
at which the user interacts with the neuromorphic system.

The user describes their computation as a system of
nonlinear differential equations, agnostic to the underly-
ing hardware. Automated synthesis proceeds by charac-
terizing the hardware and implementing each equation
using a group of neurons that are physically colocated

Fig. 1. Mapping a computation onto Braindrop. (a) Desired

computation is described as a system of coupled dynamical

equations. (b) NEF describes how to synthesize each

subcomputation using a pool of dynamical neurons. (c) User uses

Nengo, the NEF’s Python-based programming environment,

to translate the equations into a network of pools. (d) Computation

is implemented on Braindrop (blue outer outline indicates the

package; inner outline indicates the die’s core circuitry). Nengo

communicates with Braindrop through its driver software to provide

a real-time interface.

(called a pool). This computing paradigm, theoretically
underpinned by the Neural Engineering Framework
(NEF) [13], is not only tolerant of, but also reliant on,
mismatch; neuron responses form a set of basis functions
that must be dissimilar and overcomplete. Dissimilarity
enables arbitrary functions of the input space to be approx-
imated by a linear transform. Overcompleteness ensures
that the solutions exist in the null-space of the set’s thermal
variation. Thus, these two properties enable us to abstract
the analog soma and synapse circuits’ idiosyncrasies away.

Section II briefly reviews the NEF, the level of abstrac-
tion at which a user interacts with the Braindrop sys-
tem. Section III highlights accumulative thinning and
sparse encoding, novel hardware implementations of
the NEF’s linear decoding and encoding that sparsify
digital communication in time and space, respectively.
Section IV describes Braindrop’s architecture and dis-
cusses its hardware implementation and software sup-
port. Section V characterizes and validates the hardware’s
decoding and encoding operations. Section VI demon-
strates the performance of several example applications
currently running on the Braindrop. Section VII intro-
duces an energy-efficient metric for spiking neural net-
work (SNN) architectures with different connectivities—
energy per equivalent synaptic operation—and determines
it for Braindrop over varying operating configurations.
Section VIII compares Braindrop’s energy and area efficien-
cies with other SNN architectures. Section IX presents our
conclusions.

II. N E U R A L E N G I N E E R I N G F R A M E W O R K

The NEF provides a way to translate a computation spec-
ified as a differential equation into a network of somas and

2 PROCEEDINGS OF THE IEEE

IEE
E P

ro
of

Neckar et al.: Braindrop: A Mixed-Signal Neuromorphic Architecture

signaling in space. This complementary relationship
between analog dendritic signaling and digital axonal
signaling is completely lost in traditional ANN implemen-
tations that replace discrete spike trains by continuous
rates, dynamic neuronal behavior with static point nonlin-
earities, and spatially organized neuron arrays mimicking
BNNs’ local connectivity with globally connected neurons.

The price to be paid for mimicking the BNNs’
energy-efficient mixed-signal approach with modern
CMOS process technology is the uncertainty in manu-
facturing. This uncertainty results in exponentially mis-
matched responses and thermal variability in analog (i.e.,
physically realized) neuron circuits. Because these circuits
are not time-multiplexed, they must be sized as small as
possible to maximize neuron count, and because these
circuits constantly conduct their bias current, they must be
biased with as little current as possible to minimize (sta-
tic) power consumption. However, these two requirements
make designing analog circuits in modern CMOS processes
even more challenging; smaller transistors have more mis-
matched threshold voltages, and minuscule currents are
exponentially sensitive to this mismatch [2] as well as to
the ambient temperature [3].

Thus, while using analog signaling promises energy
efficiency because of its potential to sparsify the digital
communication in space and time, analog circuits’ inher-
ent heterogeneity and variability impede programmabil-
ity and reproducibility. This heterogeneity and variability
are directly exposed to the user when the mixed-signal
neuromorphic systems are programmed at the level of
individual neuronal biases and synaptic weights [4]–[6].
Because each chip is different, for a given computation,
each must be configured differently. In addition, the silicon
neurons inherit their transistors’ thermal variation, requir-
ing further fine-tuning of programming parameters. This
lack of abstraction and reproducibility limits adoption to
experts who understand the hardware at the circuit level.
To ease programmability and guarantee reproducibility,
some recent large-scale neuromorphic systems adopt an
all-digital approach [7], [8].

This paper presents Braindrop (see Fig. 1), the first
mixed-signal neuromorphic system designed with a clean
set of mismatch- and temperature-invariant abstrac-
tions in mind. Unlike previous approaches for analog
computation [9]–[12], which use fewer, bigger analog cir-
cuits biased with large currents to minimize mismatch (and
its associated thermal variation), Braindrop’s hardware
and software embrace mismatch, working in concert to
harness the inherent variability in its analog electronics to
perform computation, thereby presenting a clean abstrac-
tion to the user. Orchestrating hardware and software
automatically is enabled by raising the level of abstraction
at which the user interacts with the neuromorphic system.

The user describes their computation as a system of
nonlinear differential equations, agnostic to the underly-
ing hardware. Automated synthesis proceeds by charac-
terizing the hardware and implementing each equation
using a group of neurons that are physically colocated

Fig. 1. Mapping a computation onto Braindrop. (a) Desired

computation is described as a system of coupled dynamical

equations. (b) NEF describes how to synthesize each

subcomputation using a pool of dynamical neurons. (c) User uses

Nengo, the NEF’s Python-based programming environment,

to translate the equations into a network of pools. (d) Computation

is implemented on Braindrop (blue outer outline indicates the

package; inner outline indicates the die’s core circuitry). Nengo

communicates with Braindrop through its driver software to provide

a real-time interface.

(called a pool). This computing paradigm, theoretically
underpinned by the Neural Engineering Framework
(NEF) [13], is not only tolerant of, but also reliant on,
mismatch; neuron responses form a set of basis functions
that must be dissimilar and overcomplete. Dissimilarity
enables arbitrary functions of the input space to be approx-
imated by a linear transform. Overcompleteness ensures
that the solutions exist in the null-space of the set’s thermal
variation. Thus, these two properties enable us to abstract
the analog soma and synapse circuits’ idiosyncrasies away.

Section II briefly reviews the NEF, the level of abstrac-
tion at which a user interacts with the Braindrop sys-
tem. Section III highlights accumulative thinning and
sparse encoding, novel hardware implementations of
the NEF’s linear decoding and encoding that sparsify
digital communication in time and space, respectively.
Section IV describes Braindrop’s architecture and dis-
cusses its hardware implementation and software sup-
port. Section V characterizes and validates the hardware’s
decoding and encoding operations. Section VI demon-
strates the performance of several example applications
currently running on the Braindrop. Section VII intro-
duces an energy-efficient metric for spiking neural net-
work (SNN) architectures with different connectivities—
energy per equivalent synaptic operation—and determines
it for Braindrop over varying operating configurations.
Section VIII compares Braindrop’s energy and area efficien-
cies with other SNN architectures. Section IX presents our
conclusions.

II. N E U R A L E N G I N E E R I N G F R A M E W O R K

The NEF provides a way to translate a computation spec-
ified as a differential equation into a network of somas and

2 PROCEEDINGS OF THE IEEE

IEE
E P

ro
of

Neckar et al.: Braindrop: A Mixed-Signal Neuromorphic Architecture

signaling in space. This complementary relationship
between analog dendritic signaling and digital axonal
signaling is completely lost in traditional ANN implemen-
tations that replace discrete spike trains by continuous
rates, dynamic neuronal behavior with static point nonlin-
earities, and spatially organized neuron arrays mimicking
BNNs’ local connectivity with globally connected neurons.

The price to be paid for mimicking the BNNs’
energy-efficient mixed-signal approach with modern
CMOS process technology is the uncertainty in manu-
facturing. This uncertainty results in exponentially mis-
matched responses and thermal variability in analog (i.e.,
physically realized) neuron circuits. Because these circuits
are not time-multiplexed, they must be sized as small as
possible to maximize neuron count, and because these
circuits constantly conduct their bias current, they must be
biased with as little current as possible to minimize (sta-
tic) power consumption. However, these two requirements
make designing analog circuits in modern CMOS processes
even more challenging; smaller transistors have more mis-
matched threshold voltages, and minuscule currents are
exponentially sensitive to this mismatch [2] as well as to
the ambient temperature [3].

Thus, while using analog signaling promises energy
efficiency because of its potential to sparsify the digital
communication in space and time, analog circuits’ inher-
ent heterogeneity and variability impede programmabil-
ity and reproducibility. This heterogeneity and variability
are directly exposed to the user when the mixed-signal
neuromorphic systems are programmed at the level of
individual neuronal biases and synaptic weights [4]–[6].
Because each chip is different, for a given computation,
each must be configured differently. In addition, the silicon
neurons inherit their transistors’ thermal variation, requir-
ing further fine-tuning of programming parameters. This
lack of abstraction and reproducibility limits adoption to
experts who understand the hardware at the circuit level.
To ease programmability and guarantee reproducibility,
some recent large-scale neuromorphic systems adopt an
all-digital approach [7], [8].

This paper presents Braindrop (see Fig. 1), the first
mixed-signal neuromorphic system designed with a clean
set of mismatch- and temperature-invariant abstrac-
tions in mind. Unlike previous approaches for analog
computation [9]–[12], which use fewer, bigger analog cir-
cuits biased with large currents to minimize mismatch (and
its associated thermal variation), Braindrop’s hardware
and software embrace mismatch, working in concert to
harness the inherent variability in its analog electronics to
perform computation, thereby presenting a clean abstrac-
tion to the user. Orchestrating hardware and software
automatically is enabled by raising the level of abstraction
at which the user interacts with the neuromorphic system.

The user describes their computation as a system of
nonlinear differential equations, agnostic to the underly-
ing hardware. Automated synthesis proceeds by charac-
terizing the hardware and implementing each equation
using a group of neurons that are physically colocated

Fig. 1. Mapping a computation onto Braindrop. (a) Desired

computation is described as a system of coupled dynamical

equations. (b) NEF describes how to synthesize each

subcomputation using a pool of dynamical neurons. (c) User uses

Nengo, the NEF’s Python-based programming environment,

to translate the equations into a network of pools. (d) Computation

is implemented on Braindrop (blue outer outline indicates the

package; inner outline indicates the die’s core circuitry). Nengo

communicates with Braindrop through its driver software to provide

a real-time interface.

(called a pool). This computing paradigm, theoretically
underpinned by the Neural Engineering Framework
(NEF) [13], is not only tolerant of, but also reliant on,
mismatch; neuron responses form a set of basis functions
that must be dissimilar and overcomplete. Dissimilarity
enables arbitrary functions of the input space to be approx-
imated by a linear transform. Overcompleteness ensures
that the solutions exist in the null-space of the set’s thermal
variation. Thus, these two properties enable us to abstract
the analog soma and synapse circuits’ idiosyncrasies away.

Section II briefly reviews the NEF, the level of abstrac-
tion at which a user interacts with the Braindrop sys-
tem. Section III highlights accumulative thinning and
sparse encoding, novel hardware implementations of
the NEF’s linear decoding and encoding that sparsify
digital communication in time and space, respectively.
Section IV describes Braindrop’s architecture and dis-
cusses its hardware implementation and software sup-
port. Section V characterizes and validates the hardware’s
decoding and encoding operations. Section VI demon-
strates the performance of several example applications
currently running on the Braindrop. Section VII intro-
duces an energy-efficient metric for spiking neural net-
work (SNN) architectures with different connectivities—
energy per equivalent synaptic operation—and determines
it for Braindrop over varying operating configurations.
Section VIII compares Braindrop’s energy and area efficien-
cies with other SNN architectures. Section IX presents our
conclusions.

II. N E U R A L E N G I N E E R I N G F R A M E W O R K

The NEF provides a way to translate a computation spec-
ified as a differential equation into a network of somas and

2 PROCEEDINGS OF THE IEEE

IEE
E P

ro
of

Neckar et al.: Braindrop: A Mixed-Signal Neuromorphic Architecture

Fig. 15. Braindrop implements an integrator. The state is decoded

from a 1024-neuron network’s spiking activity using a synaptic filter

with τ 0.2 s. We used bootstrapping to visualize the mean and

95% confidence interval from 200 trials. Training and testing signals

are independently sampled from the derivative of a 1-Hz

band-limited white-noise process.

constants [19]. First, we characterized each tap point’s
synaptic filter by applying a step function to its input
and recording its closest neurons’ responses. Fitting
an exponential to these step responses yielded its time
constant, τsyni (µ± σ =179±54 ms). Next, we determined
the gain, τsyni /τunit, that effectively drives each tap
point with (τsyni /τunit)u(t) + x̂(t) [i.e., setting f(x) = 0

in Fig. 2], where x̂(t) ≈ x(t) is decoded from the pool’s
spike trains. In total, we provided recurrent feedback
to 1024 neurons through 72 calibrated tap-point filters
(1/ρ = 14.2). Performance is extremely close to ideal: the
ideal target falls within a 95% confidence interval of the
network’s mean performance, averaged across 200 trials
(see Fig. 15).

To provide an example of a more sophisticated dynam-
ical system, we implemented a delay network that buffers
a continuous-time rolling window of its input [20]. This
network approximates a θ-s delay-line’s transfer function,
F (s) = e−θs. We analytically derive state-space matrices,
A and B, corresponding to this system’s Padé approximant
of order [(q − 1)/q], for some chosen dimensionality q,
and, then, numerically compute its balanced realization.
Then, we determine a linear transformation, Cθ′/θ, from
the state vector, x(t) ∈ Rq, to a delayed version of its input,
c(t − θ′).13 In summary, we have

θẋ(t) = Ax(t) + Bc(t)

c(t − θ′) ≈ Cθ′/θx(t), 0 ≤ θ′ ≤ θ

where the approximation error is O((θs)2q).
We have mapped our approximation to a delay line onto

Braindrop with θ = 0.1 s and q = 3 using three 1-D

13Alternatively, different linear transformations can be determined
to approximate the input’s continuous-time convolution with any linear
kernel—or integral transform—up to the window’s length.

pools,14 with 128 neurons each, for a total 384 neurons
(see Fig. 16). In this case, we set tap-point density to
1/4 (the maximum) and found performance to be robust.
Hence, we did not need to compensate for time constant
mismatch. Across the 0.1-s time window, the normalized
RMSE is 14.6%.

VII. B R A I N D R O P ’ s E N E R G Y E F F I C I E N C Y

Without a clear set of benchmarks, the efficiency of neu-
romorphic architectures is typically quantified by energy
per synaptic operation [7], [33], but what exactly con-
stitutes a synaptic operation differs from one architec-
ture to another. Importantly, the work involved varies
depending on how weight matrices are represented (e.g.,
sparse, low-rank versus dense, and full-rank), whether
the network size necessitates intercore communication,
and what signal representations are used—physical ana-
log versus integer-valued digital versus unary spikes—
each choice yields a different energy–precision scaling [1].
Here, we introduce a metric useful for comparing Brain-
drop’s N×d×N decode–encode architecture with the more
common N ×N neurosynaptic architecture (i.e., direct all-
to-all connectivity).

14In the NEF, multidimensional pools are only necessary to decode
a nonlinear function of the state vector (e.g., as in the Lorenz attractor).

Fig. 16. Braindrop implements a delay line. Top: linear

transformation of the (3-D) state vector yields the input signal

delayed by 0–0.1 s. Across this time window, the normalized

RMSE (insert) ranged between 0% and 20%. The test signal is white

noise, band limited to 3 Hz. Bottom: state vector, decoded from the

384-neuron network’s spiking activity (using a synaptic filter with

τ 18.3 ms) closely matches the numerical solution (obtained with

zero-order hold and 1-ms time step).

12 PROCEEDINGS OF THE IEEE

2

Figure 1. Mapping a computation onto Braindrop. A: The desired computation
is described as a system of coupled dynamical equations. B: The Neural
Engineering Framework (NEF) describes how to synthesize each subcom-
putation using a pool of dynamical neurons. C: The user uses Nengo, the
NEF’s Python-based programming environment, to translate the equations
into a network of pools. D: The computation is implemented on Braindrop
(blue outer outline indicates the package; inner outline indicates the die’s core
circuitry). Nengo communicates with Braindrop through its driver software to
provide a real-time interface.

Engineering Framework (NEF) [13], is not only tolerant of,
but reliant on mismatch: Neuron responses form a set of
basis functions that must be dissimilar and overcomplete.
Dissimilarity enables arbitrary functions of the input space
to be approximated by a linear transform. Overcompleteness
ensures that solutions exist in the nullspace of the set’s thermal
variation. Thus, these two properties enable us to abstract the
analog soma and synapse circuits’ idiosyncrasies away.

Section II briefly reviews the NEF, the level of abstraction at
which a user interacts with the Braindrop system. Section III
highlights accumulative thinning and sparse encoding, novel
hardware implementations of the NEF’s linear decoding and
encoding that sparsify digital communication in time and
space, respectively. Section IV describes Braindrop’s architec-
ture and discusses its hardware implementation and software
support. Section V characterizes and validates the hardware’s
decoding and encoding operations. Section VI demonstrates
the performance of several example applications currently run-
ning on Braindrop. Section VII introduces an energy-efficiency
metric for spiking neural network (SNN) architectures with
different connectivities—energy per equivalent synaptic oper-
ation—and determines it for Braindrop over varying operating
configurations. Section VIII compares Braindrop’s energy-
and area-efficiency with other SNN architectures. Section IX
presents our conclusions.

II. THE NEURAL ENGINEERING FRAMEWORK

The Neural Engineering Framework (NEF) provides a way
to translate a computation specified as a differential equation
into a network of somas, synapses, and their interconnections.
A soma is viewed as implementing a static nonlinear function,
whose argument is a continuous current and whose value is
the soma’s spike-train. A synapse is viewed as implementing
leaky integration (i.e., lowpass temporal filtering), thereby

Figure 2. Emulating the nonlinear dynamical system ⌧

dyn

ẋ(t) = f(x) +
u(t) with a spiking neural network. This system’s dynamics are matched by
assigning D

T

i

such that
P

i

D

T

i

�

xi ⇡ ⌧

syn

/⌧

dyn

f(x) + x (after synaptic
filtering) and setting c(t) = ⌧

syn

/⌧

dyn

u(t). Line thickness depicts magnitude
of the weight, which may be positive (green), negative (purple), or zero (gray).

converting these spike trains back into a continuous current.
A differential equation’s state-variable (x), which may be
multidimensional, is represented by a vector of d current
signals. The equation specifies a transformation (f(x)) of this
vector of d input current signals into another vector of d
output current signals. This transformation is realized—and
temporally integrated—by a collection (or pool) of N somas
and d synaptic filters in four steps (Fig. 2).

First, differently weighted sums of the d input currents are
fed into each of the N somas (one per soma), a linear mapping
known as encoding. Based on its particular weighting, each
soma in the pool will provide a stronger response for a partic-
ular set of input vectors. A soma is excited (receives positive
current) when the vector points in its preferred direction, and
is inhibited (receives negative current) when it points away.
The NEF chooses these directions—specified by encoding
vectors—randomly, to ensure that all directions are represented
with equal probability.

Second, these N current inputs are transformed by the
somas’ static nonlinearities into N spike-trains, a point-wise
nonlinear mapping. Before passing the input current through
its static nonlinearity, each soma scales it by a gain and
adds a bias current. The NEF assigns somas gains and biases
drawn from a wide distribution, resulting in a heterogenous
set of nonlinearities. Compounded with their randomly drawn
encoding vectors, the somas’ nonlinear responses form a dis-
similar and overcomplete basis-set for approximating arbitrary
multidimensional transformations of the input vector.

Third, these N spike-trains are converted into d weighted
sums, another linear mapping known as decoding. For the

2

Figure 1. Mapping a computation onto Braindrop. A: The desired computation
is described as a system of coupled dynamical equations. B: The Neural
Engineering Framework (NEF) describes how to synthesize each subcom-
putation using a pool of dynamical neurons. C: The user uses Nengo, the
NEF’s Python-based programming environment, to translate the equations
into a network of pools. D: The computation is implemented on Braindrop
(blue outer outline indicates the package; inner outline indicates the die’s core
circuitry). Nengo communicates with Braindrop through its driver software to
provide a real-time interface.

Engineering Framework (NEF) [13], is not only tolerant of,
but reliant on mismatch: Neuron responses form a set of
basis functions that must be dissimilar and overcomplete.
Dissimilarity enables arbitrary functions of the input space
to be approximated by a linear transform. Overcompleteness
ensures that solutions exist in the nullspace of the set’s thermal
variation. Thus, these two properties enable us to abstract the
analog soma and synapse circuits’ idiosyncrasies away.

Section II briefly reviews the NEF, the level of abstraction at
which a user interacts with the Braindrop system. Section III
highlights accumulative thinning and sparse encoding, novel
hardware implementations of the NEF’s linear decoding and
encoding that sparsify digital communication in time and
space, respectively. Section IV describes Braindrop’s architec-
ture and discusses its hardware implementation and software
support. Section V characterizes and validates the hardware’s
decoding and encoding operations. Section VI demonstrates
the performance of several example applications currently run-
ning on Braindrop. Section VII introduces an energy-efficiency
metric for spiking neural network (SNN) architectures with
different connectivities—energy per equivalent synaptic oper-
ation—and determines it for Braindrop over varying operating
configurations. Section VIII compares Braindrop’s energy-
and area-efficiency with other SNN architectures. Section IX
presents our conclusions.

II. THE NEURAL ENGINEERING FRAMEWORK

The Neural Engineering Framework (NEF) provides a way
to translate a computation specified as a differential equation
into a network of somas, synapses, and their interconnections.
A soma is viewed as implementing a static nonlinear function,
whose argument is a continuous current and whose value is
the soma’s spike-train. A synapse is viewed as implementing
leaky integration (i.e., lowpass temporal filtering), thereby

Figure 2. Emulating the nonlinear dynamical system ⌧

dyn

ẋ(t) = f(x) +
u(t) with a spiking neural network. This system’s dynamics are matched by
assigning D

T

i

such that
P

i

D

T

i

�

xi ⇡ ⌧

syn

/⌧

dyn

f(x) + x (after synaptic
filtering) and setting c(t) = ⌧

syn

/⌧

dyn

u(t). Line thickness depicts magnitude
of the weight, which may be positive (green), negative (purple), or zero (gray).

converting these spike trains back into a continuous current.
A differential equation’s state-variable (x), which may be
multidimensional, is represented by a vector of d current
signals. The equation specifies a transformation (f(x)) of this
vector of d input current signals into another vector of d
output current signals. This transformation is realized—and
temporally integrated—by a collection (or pool) of N somas
and d synaptic filters in four steps (Fig. 2).

First, differently weighted sums of the d input currents are
fed into each of the N somas (one per soma), a linear mapping
known as encoding. Based on its particular weighting, each
soma in the pool will provide a stronger response for a partic-
ular set of input vectors. A soma is excited (receives positive
current) when the vector points in its preferred direction, and
is inhibited (receives negative current) when it points away.
The NEF chooses these directions—specified by encoding
vectors—randomly, to ensure that all directions are represented
with equal probability.

Second, these N current inputs are transformed by the
somas’ static nonlinearities into N spike-trains, a point-wise
nonlinear mapping. Before passing the input current through
its static nonlinearity, each soma scales it by a gain and
adds a bias current. The NEF assigns somas gains and biases
drawn from a wide distribution, resulting in a heterogenous
set of nonlinearities. Compounded with their randomly drawn
encoding vectors, the somas’ nonlinear responses form a dis-
similar and overcomplete basis-set for approximating arbitrary
multidimensional transformations of the input vector.

Third, these N spike-trains are converted into d weighted
sums, another linear mapping known as decoding. For the

2

Figure 1. Mapping a computation onto Braindrop. A: The desired computation
is described as a system of coupled dynamical equations. B: The Neural
Engineering Framework (NEF) describes how to synthesize each subcom-
putation using a pool of dynamical neurons. C: The user uses Nengo, the
NEF’s Python-based programming environment, to translate the equations
into a network of pools. D: The computation is implemented on Braindrop
(blue outer outline indicates the package; inner outline indicates the die’s core
circuitry). Nengo communicates with Braindrop through its driver software to
provide a real-time interface.

Engineering Framework (NEF) [13], is not only tolerant of,
but reliant on mismatch: Neuron responses form a set of
basis functions that must be dissimilar and overcomplete.
Dissimilarity enables arbitrary functions of the input space
to be approximated by a linear transform. Overcompleteness
ensures that solutions exist in the nullspace of the set’s thermal
variation. Thus, these two properties enable us to abstract the
analog soma and synapse circuits’ idiosyncrasies away.

Section II briefly reviews the NEF, the level of abstraction at
which a user interacts with the Braindrop system. Section III
highlights accumulative thinning and sparse encoding, novel
hardware implementations of the NEF’s linear decoding and
encoding that sparsify digital communication in time and
space, respectively. Section IV describes Braindrop’s architec-
ture and discusses its hardware implementation and software
support. Section V characterizes and validates the hardware’s
decoding and encoding operations. Section VI demonstrates
the performance of several example applications currently run-
ning on Braindrop. Section VII introduces an energy-efficiency
metric for spiking neural network (SNN) architectures with
different connectivities—energy per equivalent synaptic oper-
ation—and determines it for Braindrop over varying operating
configurations. Section VIII compares Braindrop’s energy-
and area-efficiency with other SNN architectures. Section IX
presents our conclusions.

II. THE NEURAL ENGINEERING FRAMEWORK

The Neural Engineering Framework (NEF) provides a way
to translate a computation specified as a differential equation
into a network of somas, synapses, and their interconnections.
A soma is viewed as implementing a static nonlinear function,
whose argument is a continuous current and whose value is
the soma’s spike-train. A synapse is viewed as implementing
leaky integration (i.e., lowpass temporal filtering), thereby

Figure 2. Emulating the nonlinear dynamical system ⌧

dyn

ẋ(t) = f(x) +
u(t) with a spiking neural network. This system’s dynamics are matched by
assigning D

T

i

such that
P

i

D

T

i

�

xi ⇡ ⌧

syn

/⌧

dyn

f(x) + x (after synaptic
filtering) and setting c(t) = ⌧

syn

/⌧

dyn

u(t). Line thickness depicts magnitude
of the weight, which may be positive (green), negative (purple), or zero (gray).

converting these spike trains back into a continuous current.
A differential equation’s state-variable (x), which may be
multidimensional, is represented by a vector of d current
signals. The equation specifies a transformation (f(x)) of this
vector of d input current signals into another vector of d
output current signals. This transformation is realized—and
temporally integrated—by a collection (or pool) of N somas
and d synaptic filters in four steps (Fig. 2).

First, differently weighted sums of the d input currents are
fed into each of the N somas (one per soma), a linear mapping
known as encoding. Based on its particular weighting, each
soma in the pool will provide a stronger response for a partic-
ular set of input vectors. A soma is excited (receives positive
current) when the vector points in its preferred direction, and
is inhibited (receives negative current) when it points away.
The NEF chooses these directions—specified by encoding
vectors—randomly, to ensure that all directions are represented
with equal probability.

Second, these N current inputs are transformed by the
somas’ static nonlinearities into N spike-trains, a point-wise
nonlinear mapping. Before passing the input current through
its static nonlinearity, each soma scales it by a gain and
adds a bias current. The NEF assigns somas gains and biases
drawn from a wide distribution, resulting in a heterogenous
set of nonlinearities. Compounded with their randomly drawn
encoding vectors, the somas’ nonlinear responses form a dis-
similar and overcomplete basis-set for approximating arbitrary
multidimensional transformations of the input vector.

Third, these N spike-trains are converted into d weighted
sums, another linear mapping known as decoding. For the

2

Figure 1. Mapping a computation onto Braindrop. A: The desired computation
is described as a system of coupled dynamical equations. B: The Neural
Engineering Framework (NEF) describes how to synthesize each subcom-
putation using a pool of dynamical neurons. C: The user uses Nengo, the
NEF’s Python-based programming environment, to translate the equations
into a network of pools. D: The computation is implemented on Braindrop
(blue outer outline indicates the package; inner outline indicates the die’s core
circuitry). Nengo communicates with Braindrop through its driver software to
provide a real-time interface.

Engineering Framework (NEF) [13], is not only tolerant of,
but reliant on mismatch: Neuron responses form a set of
basis functions that must be dissimilar and overcomplete.
Dissimilarity enables arbitrary functions of the input space
to be approximated by a linear transform. Overcompleteness
ensures that solutions exist in the nullspace of the set’s thermal
variation. Thus, these two properties enable us to abstract the
analog soma and synapse circuits’ idiosyncrasies away.

Section II briefly reviews the NEF, the level of abstraction at
which a user interacts with the Braindrop system. Section III
highlights accumulative thinning and sparse encoding, novel
hardware implementations of the NEF’s linear decoding and
encoding that sparsify digital communication in time and
space, respectively. Section IV describes Braindrop’s architec-
ture and discusses its hardware implementation and software
support. Section V characterizes and validates the hardware’s
decoding and encoding operations. Section VI demonstrates
the performance of several example applications currently run-
ning on Braindrop. Section VII introduces an energy-efficiency
metric for spiking neural network (SNN) architectures with
different connectivities—energy per equivalent synaptic oper-
ation—and determines it for Braindrop over varying operating
configurations. Section VIII compares Braindrop’s energy-
and area-efficiency with other SNN architectures. Section IX
presents our conclusions.

II. THE NEURAL ENGINEERING FRAMEWORK

The Neural Engineering Framework (NEF) provides a way
to translate a computation specified as a differential equation
into a network of somas, synapses, and their interconnections.
A soma is viewed as implementing a static nonlinear function,
whose argument is a continuous current and whose value is
the soma’s spike-train. A synapse is viewed as implementing
leaky integration (i.e., lowpass temporal filtering), thereby

Figure 2. Emulating the nonlinear dynamical system ⌧

dyn

ẋ(t) = f(x) +
u(t) with a spiking neural network. This system’s dynamics are matched by
assigning D

T

i

such that
P

i

D

T

i

�

xi ⇡ ⌧

syn

/⌧

dyn

f(x) + x (after synaptic
filtering) and setting c(t) = ⌧

syn

/⌧

dyn

u(t). Line thickness depicts magnitude
of the weight, which may be positive (green), negative (purple), or zero (gray).

converting these spike trains back into a continuous current.
A differential equation’s state-variable (x), which may be
multidimensional, is represented by a vector of d current
signals. The equation specifies a transformation (f(x)) of this
vector of d input current signals into another vector of d
output current signals. This transformation is realized—and
temporally integrated—by a collection (or pool) of N somas
and d synaptic filters in four steps (Fig. 2).

First, differently weighted sums of the d input currents are
fed into each of the N somas (one per soma), a linear mapping
known as encoding. Based on its particular weighting, each
soma in the pool will provide a stronger response for a partic-
ular set of input vectors. A soma is excited (receives positive
current) when the vector points in its preferred direction, and
is inhibited (receives negative current) when it points away.
The NEF chooses these directions—specified by encoding
vectors—randomly, to ensure that all directions are represented
with equal probability.

Second, these N current inputs are transformed by the
somas’ static nonlinearities into N spike-trains, a point-wise
nonlinear mapping. Before passing the input current through
its static nonlinearity, each soma scales it by a gain and
adds a bias current. The NEF assigns somas gains and biases
drawn from a wide distribution, resulting in a heterogenous
set of nonlinearities. Compounded with their randomly drawn
encoding vectors, the somas’ nonlinear responses form a dis-
similar and overcomplete basis-set for approximating arbitrary
multidimensional transformations of the input vector.

Third, these N spike-trains are converted into d weighted
sums, another linear mapping known as decoding. For the

Eliasmith & Anderson 2003

✤ To emulate the dynamical system 

✤ Choose decoding weights such
that, after synaptic filtering,  

✤ And set

Tapped delay-line (Braindrop)

Neckar et al. 2019
Voelker & Eliasmith 2017

IEE
E P

ro
of

Neckar et al.: Braindrop: A Mixed-Signal Neuromorphic Architecture

Fig. 15. Braindrop implements an integrator. The state is decoded

from a 1024-neuron network’s spiking activity using a synaptic filter

with τ 0.2 s. We used bootstrapping to visualize the mean and

95% confidence interval from 200 trials. Training and testing signals

are independently sampled from the derivative of a 1-Hz

band-limited white-noise process.

constants [19]. First, we characterized each tap point’s
synaptic filter by applying a step function to its input
and recording its closest neurons’ responses. Fitting
an exponential to these step responses yielded its time
constant, τsyni (µ± σ =179±54 ms). Next, we determined
the gain, τsyni /τunit, that effectively drives each tap
point with (τsyni /τunit)u(t) + x̂(t) [i.e., setting f(x) = 0

in Fig. 2], where x̂(t) ≈ x(t) is decoded from the pool’s
spike trains. In total, we provided recurrent feedback
to 1024 neurons through 72 calibrated tap-point filters
(1/ρ = 14.2). Performance is extremely close to ideal: the
ideal target falls within a 95% confidence interval of the
network’s mean performance, averaged across 200 trials
(see Fig. 15).

To provide an example of a more sophisticated dynam-
ical system, we implemented a delay network that buffers
a continuous-time rolling window of its input [20]. This
network approximates a θ-s delay-line’s transfer function,
F (s) = e−θs. We analytically derive state-space matrices,
A and B, corresponding to this system’s Padé approximant
of order [(q − 1)/q], for some chosen dimensionality q,
and, then, numerically compute its balanced realization.
Then, we determine a linear transformation, Cθ′/θ, from
the state vector, x(t) ∈ Rq, to a delayed version of its input,
c(t − θ′).13 In summary, we have

θẋ(t) = Ax(t) + Bc(t)

c(t − θ′) ≈ Cθ′/θx(t), 0 ≤ θ′ ≤ θ

where the approximation error is O((θs)2q).
We have mapped our approximation to a delay line onto

Braindrop with θ = 0.1 s and q = 3 using three 1-D

13Alternatively, different linear transformations can be determined
to approximate the input’s continuous-time convolution with any linear
kernel—or integral transform—up to the window’s length.

pools,14 with 128 neurons each, for a total 384 neurons
(see Fig. 16). In this case, we set tap-point density to
1/4 (the maximum) and found performance to be robust.
Hence, we did not need to compensate for time constant
mismatch. Across the 0.1-s time window, the normalized
RMSE is 14.6%.

VII. B R A I N D R O P ’ s E N E R G Y E F F I C I E N C Y

Without a clear set of benchmarks, the efficiency of neu-
romorphic architectures is typically quantified by energy
per synaptic operation [7], [33], but what exactly con-
stitutes a synaptic operation differs from one architec-
ture to another. Importantly, the work involved varies
depending on how weight matrices are represented (e.g.,
sparse, low-rank versus dense, and full-rank), whether
the network size necessitates intercore communication,
and what signal representations are used—physical ana-
log versus integer-valued digital versus unary spikes—
each choice yields a different energy–precision scaling [1].
Here, we introduce a metric useful for comparing Brain-
drop’s N×d×N decode–encode architecture with the more
common N ×N neurosynaptic architecture (i.e., direct all-
to-all connectivity).

14In the NEF, multidimensional pools are only necessary to decode
a nonlinear function of the state vector (e.g., as in the Lorenz attractor).

Fig. 16. Braindrop implements a delay line. Top: linear

transformation of the (3-D) state vector yields the input signal

delayed by 0–0.1 s. Across this time window, the normalized

RMSE (insert) ranged between 0% and 20%. The test signal is white

noise, band limited to 3 Hz. Bottom: state vector, decoded from the

384-neuron network’s spiking activity (using a synaptic filter with

τ 18.3 ms) closely matches the numerical solution (obtained with

zero-order hold and 1-ms time step).

12 PROCEEDINGS OF THE IEEE

IEE
E P

ro
of

Neckar et al.: Braindrop: A Mixed-Signal Neuromorphic Architecture

Fig. 15. Braindrop implements an integrator. The state is decoded

from a 1024-neuron network’s spiking activity using a synaptic filter

with τ 0.2 s. We used bootstrapping to visualize the mean and

95% confidence interval from 200 trials. Training and testing signals

are independently sampled from the derivative of a 1-Hz

band-limited white-noise process.

constants [19]. First, we characterized each tap point’s
synaptic filter by applying a step function to its input
and recording its closest neurons’ responses. Fitting
an exponential to these step responses yielded its time
constant, τsyni (µ± σ =179±54 ms). Next, we determined
the gain, τsyni /τunit, that effectively drives each tap
point with (τsyni /τunit)u(t) + x̂(t) [i.e., setting f(x) = 0

in Fig. 2], where x̂(t) ≈ x(t) is decoded from the pool’s
spike trains. In total, we provided recurrent feedback
to 1024 neurons through 72 calibrated tap-point filters
(1/ρ = 14.2). Performance is extremely close to ideal: the
ideal target falls within a 95% confidence interval of the
network’s mean performance, averaged across 200 trials
(see Fig. 15).

To provide an example of a more sophisticated dynam-
ical system, we implemented a delay network that buffers
a continuous-time rolling window of its input [20]. This
network approximates a θ-s delay-line’s transfer function,
F (s) = e−θs. We analytically derive state-space matrices,
A and B, corresponding to this system’s Padé approximant
of order [(q − 1)/q], for some chosen dimensionality q,
and, then, numerically compute its balanced realization.
Then, we determine a linear transformation, Cθ′/θ, from
the state vector, x(t) ∈ Rq, to a delayed version of its input,
c(t − θ′).13 In summary, we have

θẋ(t) = Ax(t) + Bc(t)

c(t − θ′) ≈ Cθ′/θx(t), 0 ≤ θ′ ≤ θ

where the approximation error is O((θs)2q).
We have mapped our approximation to a delay line onto

Braindrop with θ = 0.1 s and q = 3 using three 1-D

13Alternatively, different linear transformations can be determined
to approximate the input’s continuous-time convolution with any linear
kernel—or integral transform—up to the window’s length.

pools,14 with 128 neurons each, for a total 384 neurons
(see Fig. 16). In this case, we set tap-point density to
1/4 (the maximum) and found performance to be robust.
Hence, we did not need to compensate for time constant
mismatch. Across the 0.1-s time window, the normalized
RMSE is 14.6%.

VII. B R A I N D R O P ’ s E N E R G Y E F F I C I E N C Y

Without a clear set of benchmarks, the efficiency of neu-
romorphic architectures is typically quantified by energy
per synaptic operation [7], [33], but what exactly con-
stitutes a synaptic operation differs from one architec-
ture to another. Importantly, the work involved varies
depending on how weight matrices are represented (e.g.,
sparse, low-rank versus dense, and full-rank), whether
the network size necessitates intercore communication,
and what signal representations are used—physical ana-
log versus integer-valued digital versus unary spikes—
each choice yields a different energy–precision scaling [1].
Here, we introduce a metric useful for comparing Brain-
drop’s N×d×N decode–encode architecture with the more
common N ×N neurosynaptic architecture (i.e., direct all-
to-all connectivity).

14In the NEF, multidimensional pools are only necessary to decode
a nonlinear function of the state vector (e.g., as in the Lorenz attractor).

Fig. 16. Braindrop implements a delay line. Top: linear

transformation of the (3-D) state vector yields the input signal

delayed by 0–0.1 s. Across this time window, the normalized

RMSE (insert) ranged between 0% and 20%. The test signal is white

noise, band limited to 3 Hz. Bottom: state vector, decoded from the

384-neuron network’s spiking activity (using a synaptic filter with

τ 18.3 ms) closely matches the numerical solution (obtained with

zero-order hold and 1-ms time step).

12 PROCEEDINGS OF THE IEEE

IEE
E P

ro
of

Neckar et al.: Braindrop: A Mixed-Signal Neuromorphic Architecture

Fig. 15. Braindrop implements an integrator. The state is decoded

from a 1024-neuron network’s spiking activity using a synaptic filter

with τ 0.2 s. We used bootstrapping to visualize the mean and

95% confidence interval from 200 trials. Training and testing signals

are independently sampled from the derivative of a 1-Hz

band-limited white-noise process.

constants [19]. First, we characterized each tap point’s
synaptic filter by applying a step function to its input
and recording its closest neurons’ responses. Fitting
an exponential to these step responses yielded its time
constant, τsyni (µ± σ =179±54 ms). Next, we determined
the gain, τsyni /τunit, that effectively drives each tap
point with (τsyni /τunit)u(t) + x̂(t) [i.e., setting f(x) = 0

in Fig. 2], where x̂(t) ≈ x(t) is decoded from the pool’s
spike trains. In total, we provided recurrent feedback
to 1024 neurons through 72 calibrated tap-point filters
(1/ρ = 14.2). Performance is extremely close to ideal: the
ideal target falls within a 95% confidence interval of the
network’s mean performance, averaged across 200 trials
(see Fig. 15).

To provide an example of a more sophisticated dynam-
ical system, we implemented a delay network that buffers
a continuous-time rolling window of its input [20]. This
network approximates a θ-s delay-line’s transfer function,
F (s) = e−θs. We analytically derive state-space matrices,
A and B, corresponding to this system’s Padé approximant
of order [(q − 1)/q], for some chosen dimensionality q,
and, then, numerically compute its balanced realization.
Then, we determine a linear transformation, Cθ′/θ, from
the state vector, x(t) ∈ Rq, to a delayed version of its input,
c(t − θ′).13 In summary, we have

θẋ(t) = Ax(t) + Bc(t)

c(t − θ′) ≈ Cθ′/θx(t), 0 ≤ θ′ ≤ θ

where the approximation error is O((θs)2q).
We have mapped our approximation to a delay line onto

Braindrop with θ = 0.1 s and q = 3 using three 1-D

13Alternatively, different linear transformations can be determined
to approximate the input’s continuous-time convolution with any linear
kernel—or integral transform—up to the window’s length.

pools,14 with 128 neurons each, for a total 384 neurons
(see Fig. 16). In this case, we set tap-point density to
1/4 (the maximum) and found performance to be robust.
Hence, we did not need to compensate for time constant
mismatch. Across the 0.1-s time window, the normalized
RMSE is 14.6%.

VII. B R A I N D R O P ’ s E N E R G Y E F F I C I E N C Y

Without a clear set of benchmarks, the efficiency of neu-
romorphic architectures is typically quantified by energy
per synaptic operation [7], [33], but what exactly con-
stitutes a synaptic operation differs from one architec-
ture to another. Importantly, the work involved varies
depending on how weight matrices are represented (e.g.,
sparse, low-rank versus dense, and full-rank), whether
the network size necessitates intercore communication,
and what signal representations are used—physical ana-
log versus integer-valued digital versus unary spikes—
each choice yields a different energy–precision scaling [1].
Here, we introduce a metric useful for comparing Brain-
drop’s N×d×N decode–encode architecture with the more
common N ×N neurosynaptic architecture (i.e., direct all-
to-all connectivity).

14In the NEF, multidimensional pools are only necessary to decode
a nonlinear function of the state vector (e.g., as in the Lorenz attractor).

Fig. 16. Braindrop implements a delay line. Top: linear

transformation of the (3-D) state vector yields the input signal

delayed by 0–0.1 s. Across this time window, the normalized

RMSE (insert) ranged between 0% and 20%. The test signal is white

noise, band limited to 3 Hz. Bottom: state vector, decoded from the

384-neuron network’s spiking activity (using a synaptic filter with

τ 18.3 ms) closely matches the numerical solution (obtained with

zero-order hold and 1-ms time step).

12 PROCEEDINGS OF THE IEEE

384 Braindrop neurons

Neckar et al.: Braindrop: A Mixed-Signal Neuromorphic Architecture

Fig. 15. Braindrop implements an integrator. The state is decoded

from a 1024-neuron network’s spiking activity using a synaptic filter

with τ 0.2 s. We used bootstrapping to visualize the mean and

95% confidence interval from 200 trials. Training and testing signals

are independently sampled from the derivative of a 1-Hz

band-limited white-noise process.

constants [19]. First, we characterized each tap point’s
synaptic filter by applying a step function to its input
and recording its closest neurons’ responses. Fitting
an exponential to these step responses yielded its time
constant, τsyni (µ± σ =179±54 ms). Next, we determined
the gain, τsyni /τunit, that effectively drives each tap
point with (τsyni /τunit)u(t) + x̂(t) [i.e., setting f(x) = 0

in Fig. 2], where x̂(t) ≈ x(t) is decoded from the pool’s
spike trains. In total, we provided recurrent feedback
to 1024 neurons through 72 calibrated tap-point filters
(1/ρ = 14.2). Performance is extremely close to ideal: the
ideal target falls within a 95% confidence interval of the
network’s mean performance, averaged across 200 trials
(see Fig. 15).

To provide an example of a more sophisticated dynam-
ical system, we implemented a delay network that buffers
a continuous-time rolling window of its input [20]. This
network approximates a θ-s delay-line’s transfer function,
F (s) = e−θs. We analytically derive state-space matrices,
A and B, corresponding to this system’s Padé approximant
of order [(q − 1)/q], for some chosen dimensionality q,
and, then, numerically compute its balanced realization.
Then, we determine a linear transformation, Cθ′/θ, from
the state vector, x(t) ∈ Rq, to a delayed version of its input,
c(t − θ′).13 In summary, we have

θẋ(t) = Ax(t) + Bc(t)

c(t − θ′) ≈ Cθ′/θx(t), 0 ≤ θ′ ≤ θ

where the approximation error is O((θs)2q).
We have mapped our approximation to a delay line onto

Braindrop with θ = 0.1 s and q = 3 using three 1-D

13Alternatively, different linear transformations can be determined
to approximate the input’s continuous-time convolution with any linear
kernel—or integral transform—up to the window’s length.

pools,14 with 128 neurons each, for a total 384 neurons
(see Fig. 16). In this case, we set tap-point density to
1/4 (the maximum) and found performance to be robust.
Hence, we did not need to compensate for time constant
mismatch. Across the 0.1-s time window, the normalized
RMSE is 14.6%.

VII. B R A I N D R O P ’ s E N E R G Y E F F I C I E N C Y

Without a clear set of benchmarks, the efficiency of neu-
romorphic architectures is typically quantified by energy
per synaptic operation [7], [33], but what exactly con-
stitutes a synaptic operation differs from one architec-
ture to another. Importantly, the work involved varies
depending on how weight matrices are represented (e.g.,
sparse, low-rank versus dense, and full-rank), whether
the network size necessitates intercore communication,
and what signal representations are used—physical ana-
log versus integer-valued digital versus unary spikes—
each choice yields a different energy–precision scaling [1].
Here, we introduce a metric useful for comparing Brain-
drop’s N×d×N decode–encode architecture with the more
common N ×N neurosynaptic architecture (i.e., direct all-
to-all connectivity).

14In the NEF, multidimensional pools are only necessary to decode
a nonlinear function of the state vector (e.g., as in the Lorenz attractor).

Fig. 16. Braindrop implements a delay line. Top: linear

transformation of the (3-D) state vector yields the input signal

delayed by 0–0.1 s. Across this time window, the normalized

RMSE (insert) ranged between 0% and 20%. The test signal is white

noise, band limited to 3 Hz. Bottom: state vector, decoded from the

384-neuron network’s spiking activity (using a synaptic filter with

τ 18.3 ms) closely matches the numerical solution (obtained with

zero-order hold and 1-ms time step).

Vol. 107, No. 1, January 2019 | PROCEEDINGS OF THE IEEE 155

15
28 6.4

1.1

Measured Energy/op (pJ)

3.8

✤ Analog convolving
fans out d spike-trains
to N neurons; sparsifies
spatially by d/N

✤ Digital thinning lets
one per SNR spikes
through; sparsifies
temporally by 1/SNR

Neckar et al.: Braindrop: A Mixed-Signal Neuromorphic Architecture

Fig. 17. Braindrop’s minimum energy per equivalent synaptic

operation. Dynamic power consumed by an N × d × N decode–encode

network is divided by the throughput an N × N neurosynaptic

network requires to achieve the same SNR (R). This energy (top)

and k’s optimal value (bottom) are plotted versus R for various

numbers of neurons per dimension (N/d d). As N ∝ d ,

the exponent (d) approximately equals the pool’s dimensionality (d).

Braindrop is most efficient when d ≪ N and R ≫ .

To compare SNNs’ with different weight-matrix repre-
sentations, we define the energy per equivalent synaptic
operation (Eop) metric. An N × d × N decode–encode
network’s Eop is its dynamic power consumption divided
by the throughput (TFC), an N×N neurosynaptic network
requires to achieve the same SNR. This definition relies on
the fact that, in general, an N×d×d×N decode-transform-
encode network is mathematically identical to an N × N

neurosynaptic network with weights W = ETTD. Here,
E’s and D’s columns specify encoding and decoding vec-
tors, while T specifies a transform. For simplicity, we drop
T and calculate Eop for an N×d×N network on Braindrop.

We determine Braindrop’s minimum energy per equiva-
lent synaptic operation (Ěop) in four steps. First, we deter-
mine the throughputs a given SNR (Rg) observed at the
input to each soma in the second N -neuron pool implies
in the decoding (Td), FIFO (Tf), and encoding (Te) stages.
Second, we multiply these throughputs by the decode’s,
FIFO’s, and encode’s energies per operation, Ed, Ef, and
Ee, respectively, to compute the total power consumed.
Third, we optimize k to obtain Braindrop’s minimum
power consumption, P̌BD, for any desired output SNR,
Rg. Finally, we divide our expression for P̌BD by TFC,
the neurosynaptic network’s throughput, to obtain

Ěop ≈ 1
2

d
N

1 + 1 + 2
K
Rg

2/3

1 +
K
Rg

2/3

Ed

(1)

where K = 2/3E1/k/Ed, with E1/k = Ef + PEe, and P

is the number of tap points per dimension. For Rg ≪ K,
Ěop scales as R−2/3

g because P̌BD scales as R4/3
g , while TFC

scales as R2
g. For Rg ≫ K, Ěop asymptotes to 1/2Ed/(N/d)

because P̌BD and TFC both scale as R2
g. (For a complete

derivation, see Appendix C.)
Equation (1) predicts that as the number of neurons per

dimension (N/d) increases, Braindrop’s minimum energy
per equivalent synaptic operation, Ěop(Rg), reaches a
lower and lower asymptote and takes longer and longer
to get there. It reaches a lower asymptote because each
first-pool soma’s spike evokes d weighting operations in the
N × d × N network versus N in the N × N one. It takes
longer to get there because K is (roughly) proportional
to N/d. Recall that K = 2/3(E1/k/Ed) and E1/k =

Ef + PEe. Hence, for Ed ≈ Ee ≈ Ef , K ≈ 2/3(1 + P).
For constant tap-point density ρ, however, P = ρN/d.
Thus, Braindrop’s energy per equivalent synaptic operation
is highest when Rg ≫ ρN/d and d ≪ N .

Braindrop’s minimum energy per equivalent synaptic
operation, Ěop, varied as we expected with Rg and N/d, for
tap-point density ρ = 1/8 and experimentally determined
values of Ed, Ef, and Ee (see Fig. 17). We obtained
these values from slopes of measured power consumption
versus operating frequency plots for Braindrop’s major
digital components; these experiments also yielded each
component’s maximum throughput (see Table 2).15 As N/d

increases, Ěop indeed reaches lower and lower asymptotes
at higher and higher values of Rg. That is, it is lowest
when the equivalent synaptic weight matrix’s rank is much
lower than N and the SNR is much higher than ρN/d. For
ρ = 1/8, N/d = 64, and Rg = 20—a typical operating point
for NEF networks—the minimum energy per equivalent
synaptic operation is Ěop = 381 fJ.

For comparison with non-SNNs, which use physical
analog or integer-valued digital signal representations,
Braindrop’s power per unit bandwidth, ĚBD = 2πτ P̌BD,
is a more useful metric. Substituting P̌BD’s expression
(see Appendix C), we have

ĚBD ≈ 1 + 1 + 5.7R−2/3
g 0.35 + R−2/3

g 67dR2
g pJ (2)

15Measurements marked as × in Table 2 were infeasible. Static
power dissipation was 6 mW—50 times higher than its nominal value.
We suspect that this anomaly is due to a problem in the foundry-provided
pad frame. Active power and static power for the analog components
are negligible, compared to either component of digital power.

Table 2 Component Energy per Operation and Throughput (V 1 V)

156 PROCEEDINGS OF THE IEEE | Vol. 107, No. 1, January 2019

Neckar et al.: Braindrop: A Mixed-Signal Neuromorphic Architecture

Fig. 17. Braindrop’s minimum energy per equivalent synaptic

operation. Dynamic power consumed by an N × d × N decode–encode

network is divided by the throughput an N × N neurosynaptic

network requires to achieve the same SNR (R). This energy (top)

and k’s optimal value (bottom) are plotted versus R for various

numbers of neurons per dimension (N/d d). As N ∝ d ,

the exponent (d) approximately equals the pool’s dimensionality (d).

Braindrop is most efficient when d ≪ N and R ≫ .

To compare SNNs’ with different weight-matrix repre-
sentations, we define the energy per equivalent synaptic
operation (Eop) metric. An N × d × N decode–encode
network’s Eop is its dynamic power consumption divided
by the throughput (TFC), an N×N neurosynaptic network
requires to achieve the same SNR. This definition relies on
the fact that, in general, an N×d×d×N decode-transform-
encode network is mathematically identical to an N × N

neurosynaptic network with weights W = ETTD. Here,
E’s and D’s columns specify encoding and decoding vec-
tors, while T specifies a transform. For simplicity, we drop
T and calculate Eop for an N×d×N network on Braindrop.

We determine Braindrop’s minimum energy per equiva-
lent synaptic operation (Ěop) in four steps. First, we deter-
mine the throughputs a given SNR (Rg) observed at the
input to each soma in the second N -neuron pool implies
in the decoding (Td), FIFO (Tf), and encoding (Te) stages.
Second, we multiply these throughputs by the decode’s,
FIFO’s, and encode’s energies per operation, Ed, Ef, and
Ee, respectively, to compute the total power consumed.
Third, we optimize k to obtain Braindrop’s minimum
power consumption, P̌BD, for any desired output SNR,
Rg. Finally, we divide our expression for P̌BD by TFC,
the neurosynaptic network’s throughput, to obtain

Ěop ≈ 1
2

d
N

1 + 1 + 2
K
Rg

2/3

1 +
K
Rg

2/3

Ed

(1)

where K = 2/3E1/k/Ed, with E1/k = Ef + PEe, and P

is the number of tap points per dimension. For Rg ≪ K,
Ěop scales as R−2/3

g because P̌BD scales as R4/3
g , while TFC

scales as R2
g. For Rg ≫ K, Ěop asymptotes to 1/2Ed/(N/d)

because P̌BD and TFC both scale as R2
g. (For a complete

derivation, see Appendix C.)
Equation (1) predicts that as the number of neurons per

dimension (N/d) increases, Braindrop’s minimum energy
per equivalent synaptic operation, Ěop(Rg), reaches a
lower and lower asymptote and takes longer and longer
to get there. It reaches a lower asymptote because each
first-pool soma’s spike evokes d weighting operations in the
N × d × N network versus N in the N × N one. It takes
longer to get there because K is (roughly) proportional
to N/d. Recall that K = 2/3(E1/k/Ed) and E1/k =

Ef + PEe. Hence, for Ed ≈ Ee ≈ Ef , K ≈ 2/3(1 + P).
For constant tap-point density ρ, however, P = ρN/d.
Thus, Braindrop’s energy per equivalent synaptic operation
is highest when Rg ≫ ρN/d and d ≪ N .

Braindrop’s minimum energy per equivalent synaptic
operation, Ěop, varied as we expected with Rg and N/d, for
tap-point density ρ = 1/8 and experimentally determined
values of Ed, Ef, and Ee (see Fig. 17). We obtained
these values from slopes of measured power consumption
versus operating frequency plots for Braindrop’s major
digital components; these experiments also yielded each
component’s maximum throughput (see Table 2).15 As N/d

increases, Ěop indeed reaches lower and lower asymptotes
at higher and higher values of Rg. That is, it is lowest
when the equivalent synaptic weight matrix’s rank is much
lower than N and the SNR is much higher than ρN/d. For
ρ = 1/8, N/d = 64, and Rg = 20—a typical operating point
for NEF networks—the minimum energy per equivalent
synaptic operation is Ěop = 381 fJ.

For comparison with non-SNNs, which use physical
analog or integer-valued digital signal representations,
Braindrop’s power per unit bandwidth, ĚBD = 2πτ P̌BD,
is a more useful metric. Substituting P̌BD’s expression
(see Appendix C), we have

ĚBD ≈ 1 + 1 + 5.7R−2/3
g 0.35 + R−2/3

g 67dR2
g pJ (2)

15Measurements marked as × in Table 2 were infeasible. Static
power dissipation was 6 mW—50 times higher than its nominal value.
We suspect that this anomaly is due to a problem in the foundry-provided
pad frame. Active power and static power for the analog components
are negligible, compared to either component of digital power.

Table 2 Component Energy per Operation and Throughput (V 1 V)

156 PROCEEDINGS OF THE IEEE | Vol. 107, No. 1, January 2019

SNR

Neckar et al.: Braindrop: A Mixed-Signal Neuromorphic Architecture

Fig. 17. Braindrop’s minimum energy per equivalent synaptic

operation. Dynamic power consumed by an N × d × N decode–encode

network is divided by the throughput an N × N neurosynaptic

network requires to achieve the same SNR (R). This energy (top)

and k’s optimal value (bottom) are plotted versus R for various

numbers of neurons per dimension (N/d d). As N ∝ d ,

the exponent (d) approximately equals the pool’s dimensionality (d).

Braindrop is most efficient when d ≪ N and R ≫ .

To compare SNNs’ with different weight-matrix repre-
sentations, we define the energy per equivalent synaptic
operation (Eop) metric. An N × d × N decode–encode
network’s Eop is its dynamic power consumption divided
by the throughput (TFC), an N×N neurosynaptic network
requires to achieve the same SNR. This definition relies on
the fact that, in general, an N×d×d×N decode-transform-
encode network is mathematically identical to an N × N

neurosynaptic network with weights W = ETTD. Here,
E’s and D’s columns specify encoding and decoding vec-
tors, while T specifies a transform. For simplicity, we drop
T and calculate Eop for an N×d×N network on Braindrop.

We determine Braindrop’s minimum energy per equiva-
lent synaptic operation (Ěop) in four steps. First, we deter-
mine the throughputs a given SNR (Rg) observed at the
input to each soma in the second N -neuron pool implies
in the decoding (Td), FIFO (Tf), and encoding (Te) stages.
Second, we multiply these throughputs by the decode’s,
FIFO’s, and encode’s energies per operation, Ed, Ef, and
Ee, respectively, to compute the total power consumed.
Third, we optimize k to obtain Braindrop’s minimum
power consumption, P̌BD, for any desired output SNR,
Rg. Finally, we divide our expression for P̌BD by TFC,
the neurosynaptic network’s throughput, to obtain

Ěop ≈ 1
2

d
N

1 + 1 + 2
K
Rg

2/3

1 +
K
Rg

2/3

Ed

(1)

where K = 2/3E1/k/Ed, with E1/k = Ef + PEe, and P

is the number of tap points per dimension. For Rg ≪ K,
Ěop scales as R−2/3

g because P̌BD scales as R4/3
g , while TFC

scales as R2
g. For Rg ≫ K, Ěop asymptotes to 1/2Ed/(N/d)

because P̌BD and TFC both scale as R2
g. (For a complete

derivation, see Appendix C.)
Equation (1) predicts that as the number of neurons per

dimension (N/d) increases, Braindrop’s minimum energy
per equivalent synaptic operation, Ěop(Rg), reaches a
lower and lower asymptote and takes longer and longer
to get there. It reaches a lower asymptote because each
first-pool soma’s spike evokes d weighting operations in the
N × d × N network versus N in the N × N one. It takes
longer to get there because K is (roughly) proportional
to N/d. Recall that K = 2/3(E1/k/Ed) and E1/k =

Ef + PEe. Hence, for Ed ≈ Ee ≈ Ef , K ≈ 2/3(1 + P).
For constant tap-point density ρ, however, P = ρN/d.
Thus, Braindrop’s energy per equivalent synaptic operation
is highest when Rg ≫ ρN/d and d ≪ N .

Braindrop’s minimum energy per equivalent synaptic
operation, Ěop, varied as we expected with Rg and N/d, for
tap-point density ρ = 1/8 and experimentally determined
values of Ed, Ef, and Ee (see Fig. 17). We obtained
these values from slopes of measured power consumption
versus operating frequency plots for Braindrop’s major
digital components; these experiments also yielded each
component’s maximum throughput (see Table 2).15 As N/d

increases, Ěop indeed reaches lower and lower asymptotes
at higher and higher values of Rg. That is, it is lowest
when the equivalent synaptic weight matrix’s rank is much
lower than N and the SNR is much higher than ρN/d. For
ρ = 1/8, N/d = 64, and Rg = 20—a typical operating point
for NEF networks—the minimum energy per equivalent
synaptic operation is Ěop = 381 fJ.

For comparison with non-SNNs, which use physical
analog or integer-valued digital signal representations,
Braindrop’s power per unit bandwidth, ĚBD = 2πτ P̌BD,
is a more useful metric. Substituting P̌BD’s expression
(see Appendix C), we have

ĚBD ≈ 1 + 1 + 5.7R−2/3
g 0.35 + R−2/3

g 67dR2
g pJ (2)

15Measurements marked as × in Table 2 were infeasible. Static
power dissipation was 6 mW—50 times higher than its nominal value.
We suspect that this anomaly is due to a problem in the foundry-provided
pad frame. Active power and static power for the analog components
are negligible, compared to either component of digital power.

Table 2 Component Energy per Operation and Throughput (V 1 V)

156 PROCEEDINGS OF THE IEEE | Vol. 107, No. 1, January 2019

SNR

TrueNorth & Loihi

Tesla GPU (flop)
2.5 pJ

25 pJ

380 fJ Braindrop

20

Task performance

Ta
sk

 E
ne

rg
y

Task Complexity/Performance
harder

more

conventional

us?

✤ Two components:

✤ Network design

✤ Hardware design

Esys(task) = EHW (Rnet(task))

E
op

= N
active

N
conn

= (⇢
active

N)(⇢
conn

N)

Acknowledgments
Collaborators 
Stanford 
Krishna Shenoy  
Tirin Moore  
Oussama Khatib  
Waterloo
Chris Eliasmith
Terry Stewart  
Aaron Voelker
Cornell & Yale
Rajit Manohar
Ned Bingham 
Silvia Ferarri  
Taylor Clawson
Funding
NIH
Pioneer,TR01
ONR: C. Baatar

!

Students & Staff
Max Kanwal  
Scott Reid
E. Kauderer-Abrams  
Jonathan Timcheck
Recent Alumni
Ben Benjamin
Alex Neckar
Sam Fok
Nick Oza
Ashok Cutkosky  
John Aguayo
Tatiana Engel
Samir Menon
Peiran Gao  
Nick Steinmetz 
Rodrigo Alvarez

To learn more …
J Dethier, P Nuyujukian, C Eliasmith, T Stewart, S A Elassaad, K V Shenoy,
and K Boahen, A Brain-Machine Interface Operating with a Real-Time
Spiking Neural Network Control Algorithm, Advances in Neural
Information Processing Systems 24, Curran Associates, Inc., pp 2213-21,
2011.

S Choudhary, S Sloan, S Fok, A Necker, E Trautmann, P Gao, T Stewart, C
Eliasmith, and K Boahen, Silicon Neurons that Compute, International
Conference on Artificial Neural Networks, LNCS vol VV, pp 121-128,
Springer, Heidelberg, 2012.

S Menon, S Fok, A Neckar, O Khatib, and K Boahen, Controlling
Articulated Robots in Task-Space with Spiking Silicon Neurons, IEEE
International Conference on Biomedical Robotics and Biomechatronics
(BioRob), IEEE Press, pp 181-186, 2014.

K Boahen, A Neuromorph's Prospectus, Computing in Science &
Engineering, vol 19, no 2, pp 14-28, IEEE Computer Society, Los Alamitos
CA, USA, 2017.

E Kauderer-Abrams, A Gilbert, A Voelker, B Benjamin, and T C Stewart, and
K Boahen, A Population-Level Approach to Temperature Robustness
in Neuromorphic Systems, IEEE International Symposium on Circuits
and Systems (ISCAS), Baltimore MD, 2017.

A R Voelker, B V Benjamin, T C Stewart, K Boahen, and C Eliasmith,
Extending the Neural Engineering Framework for Nonideal Silicon
Synapses, IEEE International Symposium on Circuits and Systems
(ISCAS), Baltimore MD, 2017.

E Kauderer-Abrams and K Boahen, Calibrating Silicon-Synapse
Dynamics using Time-Encoding and Decoding Machines, IEEE
International Symposium on Circuits and Systems (ISCAS), Baltimore MD,
2017.

Proceedings of the IEEE, Jan 2019

Braindrop: A Mixed-Signal
Neuromorphic Architecture
With a Dynamical
Systems-Based
Programming Model
This paper provides an overview of a current approach for the construction of a
programmable computing machine inspired by the human brain.

By ALEXANDER NECKAR , SAM FOK , BEN V. BENJAMIN, TERRENCE C. STEWART, NICK N. OZA,

AARON R. VOELKER , CHRIS ELIASMITH , RAJIT MANOHAR , Senior Member IEEE,
AND KWABENA BOAHEN, Fellow IEEE

ABSTRACT | Braindrop is the first neuromorphic system

designed to be programmed at a high level of abstrac-

tion. Previous neuromorphic systems were programmed at

the neurosynaptic level and required expert knowledge of

the hardware to use. In stark contrast, Braindrop’s computa-

tions are specified as coupled nonlinear dynamical systems

and synthesized to the hardware by an automated proce-

dure. This procedure not only leverages Braindrop’s fabric

of subthreshold analog circuits as dynamic computational

primitives but also compensates for their mismatched and

temperature-sensitive responses at the network level. Thus,

Manuscript received April 24, 2018; revised October 12, 2018 and November 12,
2018; accepted November 12, 2018. Date of current version December 21,
2018. (Corresponding author: Alexander Neckar.)
This work was supported in part by the ONR under Grants N000141310419 and
N000141512827. The work of A. Voelker was supported by OGS and NSERC CGS
D. The work of C. Eliasmith was supported by the Canada Research Chairs
Program under NSERC Discovery Grant 261453.
A. Neckar, S. Fok, and B. V. Benjamin, were with the Department of Electrical
Engineering, Stanford University, Stanford, CA 94305 USA (e-mail:
aneckar@gmail.com).
T. C. Stewart, A. R. Voelker, and C. Eliasmith are with the Centre for
Theoretical Neuroscience, University of Waterloo, Waterloo, ON N2L 3G1,
Canada.
N. N. Oza was with the Department of Bioengineering, Stanford University,
Stanford, CA 94305 USA.
R. Manohar is with the Department of Electrical Engineering, Yale University,
New Haven, CT 06520 USA.
K. Boahen is with the Department of Bioengineering, Stanford University,
Stanford, CA 94305 USA, and also with the Department of Electrical Engineering,
Stanford University, Stanford, CA 94305 USA.

Digital Object Identifier 10.1109/JPROC.2018.2881432

a clean abstraction is presented to the user. Fabricated in

a 28-nm FDSOI process, Braindrop integrates 4096 neurons

in 0.65 mm2. Two innovations—sparse encoding through ana-

log spatial convolution and weighted spike-rate summation

though digital accumulative thinning—cut digital traffic drasti-

cally, reducing the energy Braindrop consumes per equivalent

synaptic operation to 381 fJ for typical network configurations.

KEYWORDS | Analog circuits; artificial neural networks; asyn-

chronous circuits; neuromorphics.

I. INTRODUCTION

By emulating the brain’s harnessing of analog signals
to efficiently compute and communicate, we can build
artificial neural networks (ANNs) that perform dynamic
computations—tasks involving time—much more energy
efficiently.

Harnessing analog signals in two important ways
enables biological neural networks (BNNs) to save energy
by using much more energetically expensive digital com-
munication sparingly [1]. First, BNNs exploit the nerve
membrane’s local capacitance to continuously and dynam-
ically update their analog somatic potentials, sparsifying
their digital axonal signaling in time. Second, BNNs exploit
local fan-out to reduce long-range communication by prop-
agating their analog dendritic signals across O(n) distance
to O(n2) somas,1 sparsifying their digital axonal signal-

1The cortical sheet’s third dimension is much shorter than its first
two (2–3 mm versus tens of centimeters).

144 PROCEEDINGS OF THE IEEE | Vol. 107, No. 1, January 2019

0018-9219 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

