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Neuromorphic computing origins

Basic research
Fundamental research.
Emulation of neural function.
Subthreshold analog
Asynchronous digital.

Recent developments
Dedicated VLSI hardware.
High performance computing.
Application driven.
Conservative approaches.
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Neuromorphic computing approach at INI

Highly interdisciplinary basic research rooted on neuroscience, non-linear
dynamical systems theory, device physics, microelectronics,. . .
Exploit the physics of silicon and emerging nano-technologies to reproduce
the bio-physics of neural systems.
Develop distributed multi-core spiking architectures using mixed signal
analog/digital VLSI circuits.
Build real–time autonomous cognitive agents able to carry out behavioral
tasks in complex environments.
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Neuromorphic processor design choices
“Listen to the Silicon” - C. Mead
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Massively parallel, distributed computation.
Time represents itself (no time-multiplexing)
Biologically plausible temporal dynamics
Adaptation and learning at multiple time scales.
No clock and no active circuits (ultra low-power).
Re-programmable network topology and connectivity.
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DYNAP-SEL: Dynamic Neuromorphic Asynch Processor
with Self Learning
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Ready for future emerging nano-technologies

Distributed SRAM and TCAM
memory cells
Capacitors for state dynamics

Ideal for co-integration with
binary, non-volatile resistive
memory devices
Ideal for co-integration with
multi-level volatile/non-volatile
memristive devices
Ideal for integration in 3D VLSI
technology

[Qiao and Indiveri, 2016],[EU ICT NeuRAM3 (687299) project]
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Analog synapse circuits
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Analog neuron circuits
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Synapse and neuron circuit response properties
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Synapse and neuron circuit response properties
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Synapse and neuron circuit response properties
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Possible routing schemes

Shared bus
Length: l

SCX project

1D Grid, Tree

Neurogrid

2D Mesh

SpiNNaker, Tianji, TrueNorth

2D Mesh gives us maximum flexibility, but it is very expensive in terms of
resources required: all-to-all connectivity for N neurons with a fan-out of F
require

F log2(N) bits/neuron
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Cortical networks: a high degree of clustering

Pyramidal Cell of Layer 3 of Cat Visual Cortex.

Dendrites (Green), Axon (Red), Clusters of Boutons (Black).

[Douglas and Martin, 2007]

Minimize memory requirements:
two-stage routing

F/M

F/M

Neuron
  1..N

Neuron
  1..NIntermediate nodes

            1..N/C

one cluster
    size: C

2
√
F × log2(C) × log2(N) bits/neuron

[Moradi and Indiveri 2014]
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Cortical network example

Routing bits/neuron

standard F log2(N)
two-stage

√
F log2(N) · 2

√
log2(C)
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Multi-core neural architecture
with heterogeneous memory structures

Combines best of 2D mesh, 2D tree, and multi-cast schemes, with
combination of source-address and destination-address routing.
Fully asynchronous hierarchical routers for intra-core (R1), inter-core (R2)
and inter-chip (R3) connectivity.
Distributed asynchronous CAM memory cells within the core and SRAM
cells in the routers.

[Moradi et al. 2018]
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Supports arbitrary large numbers of cores
but assumes networks with structured connectivity
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On-chip spike-based learning
moving beyond plain STDP

Recent spike-driven learning algorithm
Spike-driven weight change depends on the timing of
the pre-synaptic input, and on the value of the
post-synaptic neuron’s state variables.

W. Senn, S. Fusi, N. Brunel, S. Sheik, E. Neftci, R. Zecchina, M. Memmesheimer, etc.

Requirements for efficient implementation
low resolution: use a small number of stable
synaptic states;
redundancy: implement many synapses that see
the same pre- and post-synaptic activity
stochasticity & inhomogeneity: induce LTP/LTD
only in a subset of stimulated synapses.
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Spike-driven learning rule
in SW simulations

[Brader et al., 2007]
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On-chip spike-based weight update measurements
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On-chip neural dynamics measurements
Experimental results
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On-chip neural dynamics measurements
Experimental results
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On-chip spike-based learning examples
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Comparison to the state-of-the-art

[1] P. A. Merolla et al. Science. 2014. [4] C. Frenkel et al., arXiv. 2018.
[2] N. Qiao et al. Frontiers in Neuroscience, 2015. [5] M. Davies et al. IEEE Micro, 2018.
[3] S. Moradi et al. Biomedical Circuits and Systems, IEEE Trans. 2018.
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Neuromorphic processors vs. standard processors

What are they good for?
Real-time processing of
low-dimensional data
Ultra-low-power classification of
sensory signals
Low-latency decision making

What are they bad at?
High accuracy pattern
recognition
High precision number
crunching
Batch processing of data sets
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Killer Apps

Technology transfer and applications
We are now entering the era of neuromorphic intelligence in which dedicated
cognitive “chiplets” will be used to provide intelligence to a multitude of
edge-computing devices

[https://techoverlook.com/]

Health monitoring
Prosthetic controllers
Human body area networks

Intelligent “watchdogs”
Auditory scene analysis
Environmental sensing
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Conclusions
Basic research

Objectives and preliminary results
We aim to understand the principles of computation of cortical circuits for
building neuromorphic agents that can interact intelligently with the
environment.
We developed neuromorphic electronic circuits that support neural
computational primitive with synaptic plasticity and adaptation mechanisms.
We can build (and program) scalable neural processing systems that can
be interfaced to sensors and robotic platforms and (learn to) interact with
the environment in real time.
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Thanks to the funding bodies
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The end

Thank you for your attention
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Appendix

Backup slides
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Orchestrating adaptation at multiple time-scales
Homeostatic plasticity

Learning performance improves when combining learning and adaptation
mechanisms at multiple time-scalse

[J. Lisman, G. Turrigiano, W. Gerstner, F. Zenke, S. Ganguli, S. Fusi, J. Triesh, W. Legenstein, W. Maass, . . . ]

[Scholarpedia] [G. Turrigiano, 2008]
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Homeostatic plasticity in neuromorphic hardware
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Homeostatic plasticity in neuromorphic hardware
Spiking inputs

Homeostatic adaptation

Spiking output

Synapse and 
learning block

Soma block 

Synaptic 
scaling block

Process Technology AMS 0.18µm 1P6M CMOS
Silicon Area of DPI 84µm × 22µm
Size of LLC (W/L) 0.5µm / 1µm
Power Consumption 10.8 nW
Leakage Slope (1pF) 0.45µV/s
Controllable Leakage Current 0.45 aA (2.8 Electrons/sec)

Q. Ning, C. Bartolozzi, G. Indiveri, IEEE TBCAS, 2017
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Neural processing computational primitives
A basic building block for both the brain and neuromorphic systems

Pyramidal Cell of Layer 3 of Cat Visual Cortex Showing
Dendrite (Green) and Axon (Red) Forming Multiple
Clusters of Boutons (Black) in Layer 3 and 5.

Canonical Cortical Circuit Based on Electrophysiological and Modeling Studies in the
Cat Visual Cortex (from [Douglas and Martin, 1989]).

Winner-Take-All networks
[Marcus et al., “The Atoms of Neural Computation”, Science 2014]

Hence we propose that the ubiquitous mi-
crocircuit motif [. . . ] provides an important
atomic computational operation to large-scale
distributed brain computations.

[Jonke et al. J. Neurosci. 2017]
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Neuromorphic processors for sensory processing
Simple event-based vision processors

[Indiveri et al., IEDM 2015]
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Real-time low-latency convolutional neural networks
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Real-time low-latency convolutional neural networks
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ECG anomaly detection using reservoir computing

[H. Jaeger, 2003] [W. Maass et al., 2002] [F. Bauer and D. Muir, aiCTX]
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ECG anomaly detection using reservoir computing

[H. Jaeger, 2003] [W. Maass et al., 2002] [F. Bauer and D. Muir, aiCTX]
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ECG anomaly detection using reservoir computing
preliminary results

Generic,
single-led
ECG
Six different
anomaly types
One read-out
unit per
anomaly

Detection accuracy: 84.4% (per anomalous heartbeat)
False positives: 1.8% (per nominal heartbeat) [F. Bauer and D. Muir, aiCTX]
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ECG anomaly detection using reservoir computing
setup

Mean neural event rate: 14.8·103/s
Mean synaptic event rate: 787.6·103/s
Energy per neural event: 100 pJ
Energy per synaptic event: 40 pJ
Mean power consumption: 32.7 µW
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The CapoCaccia Cognitive Neuromorphic Engineering
Workshop

http://capocaccia.cc/

Interdisciplinary, international, inter EU-US
project
Morning lectures, afternoon hands-on
work-groups
Active and lively discussions (no powerpoint)
Concrete results, establishment of long-term
collaborations

Capo Caccia, Sardinia, Italy. April 23 - May 5, 2019
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A new start-up company
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