

This presentation discusses ongoing R&D work and the information in this presentation is subject to change.

Akida: A Low-Power Neuromorphic SoC for Event-Based Computation

Kristofor D. Carlson Senior Research Scientist

Machine Learning at the Edge

- Edge computing: compute where data is generated
- * Applications list:
 - * Smart home
 - * Industrial manufacturing
 - * Environment
- * Benefits:
 - * Latency reduction
 - * Power reduction
 - * Comm. reduction

- * Medical/health care
- * Transportation
- Energy management
 - Increased security
- * Increased privacy

Challenges: DNNs at the Edge

- DNNs are a popular solution for:
 - Speech recognition
 - * Image classification

- * Anomaly detection
- * Facial detection/recognition
- DNNs are great at creating multi-level representations using automated feature extraction
- * Challenges:
 - * Training requirements
 - * Memory requirements
 - Not built with event-based computing in mind

- Power requirements
- * Computational requirements
- * Adaptability

Design Goals

- * Conventional DNN inference algorithms
- * Native SNNs and event-based algorithms
- * On-chip unsupervised learning algorithms
- * Entire network runs on Akida, host only passes data and receives results

* Additional goals:

- Use well-known ML ecosystems for development
- Implement a small set of useful computational operations

Akida System on a Chip

Efficient CNN Inference

Native SNN

Unsupervised, Rapid Learning of Repeating Patterns

Akida SoC

FPGA PCIe board

Akida PCIe board A

Akida System on a Chip

Low-Power CNN Inference

- * Applications: Object classification, object detection, and speech recognition
- * Training: Supervised with labelled dataset with activation and weight quantization
- * **DNN algorithm focus**: Feed-forward CNNs
- * Purpose: CNN inference on small, low-power devices
- Solution: Use event-based convolutions/separable convolutions

Supported Layer Types

Convolutional Input Layer
Generic Event-Encoding Layer
Standard Convolutional Layer
Separable Convolutional Layer
Fully-Connected Layer
Max Pooling Layer

Global Average Pooling Layer

Akida Execution Engine Running an Event-based CNN

CIFAR10 Classification by Akida

CIFAR10 Data Set Results

- * Training Images:
 - **★** 60,000 Color Images
 - * 32 X 32 Resolution
 - * 10 Classes
- * Testing Images:
 - * 10,000 Images
- * Network:
 - * VGG-like
 - * Ternary weights
 - ★ Binary activations
- * Results:
 - **★** Accuracy: **Top-1**: ~92%

Layer #	Type/Stride	Filter Shape	Input Size
1	Conv/s1	3×3×3×128	32×32×3
2	Conv/s1 MP	3×3×128×128	32×32×128
3	Conv/s1	3×3×128×256	16×16×128
4	Conv/s1 MP	3×3×256×256	16×16×256
5	Conv/s1	3×3×256×512	8×8×256
6	Conv/s1 MP	3×3×512×512	8×8×512
7	Fully Conn	8192×1024	4×4×512
8	Fully Conn	1024×1024	1024
9	Fully Conn	1024×10	10

Total Parameters: 14,018,560

Equivalent Synapses: 655,239,168 — Benefit of using convolution

Dataset source: Alex Krizhevsky, computer Science dept. University of Toronto

ImageNet Data Set Results

*	T	ra	in	ing	ξ ₁	ma	ge	s:
					.		-	

★ ~1.2M Color Images

* 224 X 224 Resolution

* 1,000 Classes

*Testing Images:

*~50,000 Images

*Network:

* Adapted MobileNet V1*

* Akida-Compatible:

* 4-bit weights/activations

* Single 2-bit weights layer

*Results:

***** Our Accuracy: **Top-1**: ~65.6%

Triodici (et Boay i ii eiii	
Filter Shape	Input Size
$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$
$3 \times 3 \times 32 \text{ dw}$	$112 \times 112 \times 32$
$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$
$3 \times 3 \times 64 \text{ dw}$	$112 \times 112 \times 64$
$1\times1\times64\times128$	$56 \times 56 \times 64$
$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$
$1\times1\times128\times128$	$56 \times 56 \times 128$
$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$
$1\times1\times128\times256$	$28 \times 28 \times 128$
$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$
$1\times1\times256\times256$	$28 \times 28 \times 256$
$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$
$1\times1\times256\times512$	$14 \times 14 \times 256$
$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$
$1\times1\times512\times512$	$14 \times 14 \times 512$
$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$
$1\times1\times512\times1024$	$7 \times 7 \times 512$
$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$
$1 \times 1 \times 1024 \times 1024$	$7 \times 7 \times 1024$
Pool 7×7	$7 \times 7 \times 1024$
1024×1000	$1 \times 1 \times 1024$
Classifier	$1 \times 1 \times 1000$
	Filter Shape $3 \times 3 \times 3 \times 32$ dw $1 \times 1 \times 32 \times 64$ $3 \times 3 \times 64$ dw $1 \times 1 \times 64 \times 128$ $3 \times 3 \times 128$ dw $1 \times 1 \times 128 \times 128$ dw $1 \times 1 \times 128 \times 128$ dw $1 \times 1 \times 128 \times 256$ dw $1 \times 1 \times 128 \times 256$ dw $1 \times 1 \times 256 \times 256$ dw $1 \times 1 \times 256 \times 512$ dw $1 \times 1 \times 512 \times 512$ dw $1 \times 1 \times 512 \times 512$ dw $1 \times 1 \times 512 \times 1024$ dw $1 \times 1 \times 1024 \times 1024$ Pool 7×7 1024×1000

Total Parameters: 4,208,224

Equivalent Synapses: 473,256,424

Benefit of convolution

^{*}Howard, Andrew G., et al. arXiv preprint arXiv:1704.04861 (2017).

Low-Power CNN Inference: Convolutional Ops

Supported	Kernel Size	Stride	Туре
Image convolution	Conv: 3x3, 5x5, 7x7	1,2,3	Same, valid
(RGB888 or grayscale)	Max Pool: 2x2	2	
Standard convolution	1x1, 3x3, 5x5, 7x7	1	Same
Point wise convolution	1×1	1	Same
Depth-wise convolution	3×3, 5x5, 7x7	1	Same
Max pooling	2×2, 3x3	1, 2, 3 (only for 3x3)	N/A
Global average pooling	$W_{Input} \times H_{Input}$	N/A	N/A

Weight (signed)	Activation	No MACs	MACs
1 – 2-bit	1 – 2-bit		X
>2-bit	1 – 2-bit	\checkmark	X
1 – 2-bit	>2-bit	\checkmark	X
4-bit	4-bit	X	
		Lower power	Higher Power

How Can We Compute Convolutions Efficiently?

- * Reduce the number of required operations
 - Event-based convolutional and fully-connected layers
 - Separable convolutions yield fewer computations*
- * Reduce cost of each operation
 - * Especially important for SNNs (cost of each event matters!)
- * Reduce memory requirements
 - * Separable convolutions give you fewer parameters
 - * Low-precision weights (1-4 bit)

Akida System on a Chip

Efficient CNN Inference

Native SNN

Unsupervised, Rapid Learning of Repeating Patterns

Akida SoC

FPGA PCIe board

Akida PCIe board Akida USB stick

Akida System on a Chip

Akida SoC

Native SNN

Python Scripts

Unsupervised, Rapid Learning of

Repeating Patterns

Low-Power Unsupervised Learning for Pattern Recognition

- Proprietary learning rule:
 - Is an STDP-inspired learning rule
- * Includes:
 - * Homeostatic mechanisms
 - Competition mechanisms
 - * Extremely simple and efficient implementation
- * Excels at finding and learning input patterns embedded in noise with very few repetitions (on average 3–5)

On-Chip Learning Application Using DVS Camera

- Akida trained on handgestures using and event-based camera
- Pre-trained on 3 handgestures
- Learns class 5 in realtime
- Uses our proprietary unsupervised learning rule

On-Chip Learning Cybersecurity Application

Akida cybersecurity demonstration

- * Akida incorporates data-to-spike converters to process tabularized data from the PCAP file
- Trained on the CIC-IDS-2017 dataset, 2.5M lines corresponding to captured internet traffic with 14 categories of attack, using native on-chip learning
- 97.4% accuracy F1 score = 0.97 using 10% of never-seen samples as test set
- * Training time: ~20 minutes/epoch (used 1 epoch)

Akida Development Environment

Akida Development Environment

CNN2SNN Toolbox

MAC Accelerator architecture

- The classification speed is highly dependent on the host computer
- Benchmarks of frames per second have little relevance to the MAC accelerator speed itself
- Power figures are also highly dependent on the host computer, which runs all of the neural network functions
- No autonomous learning functions, limited to CNN only
- This architecture is highly suited to run any kind of dedicated Artificial Neural Network trained with Deep Learning

Akida with host architecture

- The entire network runs on the chip, the host only needs to pass preprocessed data to the network, and processed metadata is returned (classification etc)
- This frees up the host memory and cycles for other tasks
- Power and speed benchmarks are clearly defined for the Akida chip
- On-chip learning, optional convolutional, pooling and fully connected layers
- Limited to running native learning SNN, autonomous learning CNN, and feedforward CNN trained with DL.

Akida without host architecture, ECNN

- The entire event-based CNN network runs on the chip, the network configuration is contained in non-volatile memory, no host is needed
- The on-chip CPU can be used for preprocessing of data
- Power and speed benchmarks are clearly defined for the Akida chip
- On-chip learning, optional convolutional, pooling and fully connected layers
- Limited to running native learning SNN, autonomous learning CNN, and feedforward CNN trained with DL.

Akida without host architecture, SNN

- The entire network runs on the chip, no host is needed. The chip is initialized by the on-chip ARM processor, Meta-data output
- The on-chip ARM processor can be used for pre-processing of data
- Power and speed benchmarks are clearly defined for the Akida chip
- Network configuration, layers, connections are stored in non-volatile memory
- On-chip autonomous learning