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Neuromorphic Computing Exploration Space

“Deep Learning” /
Artificial Neural Networks
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Research Goals:
» Broad class of brain-inspired
computation
* Efficient hardware
implementations
* Scalable from small to large
problems and systems

Examples:
* Online and lifelong learning
* Learning without cloud assistance
» Learning with sparse supervision
* Understanding spatiotemporal data
* Probabilistic inference and learning
* Sparse coding/optimization
* Nonlinear adaptive control (robotics)
» Pattern matching with high occlusion
* SLAM and path planning
* Dynamical systems modeling



Some Principles of Neural Computation
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Fine-grained parallelism Event-driven computation
with massive fanout with time
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Why Spikes?
Findings from our research

1) Sparse communication in time optimizes energy efficiency (bits/J vs bits/s)
2) Spikes efficiently compute many rate-based models

3) Spikes provide efficient and natural processing of temporal data

4) Spikes support event-based algorithms that have nothing to do with rates
5) Spikes (surprisingly) efficiently implement phasor networks

In all examples studied so far, benefits vs conventional architectures
increase with increasing problem scale




KEY PROPERTIES

128 neuromorphic cores supporting up to 128k
neurons and 128M synapses with an advanced
spiking neural network feature set.

Supports highly complex neural network
topologies

Scalable on-chip learning capabilities to support
an unprecedented range of learning algorithms

Fully digital asynchronous implementation
Fabricated in Intel's 14nm FinFET process

technology..—#

Integrated
Memory + Compute
Neuromorphic Architecture

Daviei\etcal, “Loihi: A Neuromorphic Manycore Processor

with On

hip Learning.” IEEE Micro, Jan/Feb2018.
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Mesh Operation: Fine-Grained Synchronization
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Learning with Synaptic Plasticity

Local learning rules — essential property for

efficient scalability

Rules derived by optimizing an emergent
statistical objective

Plasticity on wide range of time scales for
v" Immediate supervised (labelled) learning
v Unsupervised self-organization
v" Working memory
v' Reinforcement-based delayed feedback

Supervision
signal

Learning rules for weight W,
may only access presynaptic
state x and postsynaptic state y

Reward spikes may be used to
distribute graded
reward/punishment values to a
particular set of axon fanouts



Loihi's Trace-Based Programmable Learning

Short time scale trace correlations

=> STDP regime

L

Presynaptic spike /L

- P n ‘X’ traces
X4(t) 1 Trace: Exponentially w Postsynaptic spike
=20 - filtered spike train ‘Y’ traces
v, (t) A T L S S Weight, Delay, and Tag learning rules
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------- // Synaptic Variables Variable Dependencies

Traces are low precision (7-9b)
and may decay stochastically for
implementation efficiency

Wogt, Delay, Tag
Long time scale traces respond
to correlations in activity rates

(variable precision)

XO’ YO! X1! Y1’ XZ’ Y21 R‘I
Wogt, Delay, Tag, etc.



Q4 2017

Wolf Mountain
Remote Access
4 Loihi/Board

Loihi Systems

Q2 2018 Q3 2018 Q2 2019
Nahuku Kapoho Bay Pohoiki Springs
Arria10 Expansion Board 1-2 Loihi Remote Access
For cloud & local use DVS interface Up to 768 chips

8-32 Loihi/Board USB host interface (100M neurons)

10



Nx SDK Software Architecture

Computational Modules 3rd party Frameworks

Nengo EONS NRP
Graph

LCA LSNN CSP EPL

Search PyNN TensorFlow ROS, etc

Nx Net API

Compiler

Nx Runtime




INTEL NEUROMORPHIC RESEARCH COMMUNITY

Collaborating to Accelerate Progress

INRG  Riken wonc
NICE Telluride 2018 |
TBD |

2018 2019 ' 2020
ICONS |

NICE |

ICONS Iceland Portland

Capocaccia |

Algorithmic Research

44+ active projects, 50+ organizations

Iceland Workshop (Sep 28 —Oct 2) éttende%y\@\researchers

Winter Workshop (Feb 171-1 ;ﬁteﬁdedg 9(')+Jg§e§earchers
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INRC Winter Workshop Attendance

Applied Brain Research KCL
U. Sherbrooke
Brunel
Argonne National Lab AFRL/RI, SRC INI / ETH Zurich
8 S RIT /
Illionois Inst. Technology yracuse

Hungarian
Academy of
Sciences

RN

U. Idaho l “‘ —(4‘
Intel Z
WSU Vancouver & —A
<D,

PSU
U(,:A\Ef;ﬁbz / Rut vill National University
utgers, Villanova of Sineapore
NASA Ames U Penn, Penn State gap
Aerospace Corp ‘TV NJIT
Disney % AFRL/RY, U. Dayton
. N Purdue, Case Western Reserve
UC Irvine, UCSD J’ Q <=¢fe Duke
MITRE &\ __UT Knoxville, ORNL
Sandia National Lab \&gTexas A&M

Los Alamos Nat'l Lab
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JOIN THE COMMUNITY

E-mail: inrc_interest@intel.com




SNN Algorithms Discovery and Development

Deep Learning Derived Approaches | * DNN->SNN conversion

. * SNN backpropagation
NS * Online SNN pseudo-backprop

Mathematically Formalized

* Locally Competitive Algorithm for LASSO
» Neural Engineering Framework (NEF)

» Stochastic SNNs for solving CSPs

» Parallel graph search

* Phasor associative memories

* Random diffusion walkers

Machine Learning

3.i New Ideas Guided by Neuroscience

» Olfaction-inspired rapid learning
* Dynamic Neural Fields

+ SLAM

* Evolutionary search

» Cortical models

»
»

Competitive Computer
Architectures
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Q DNN-to-SNN conversion for keyword spotting

Dynamic Energy Cost Per Inference (batchsize = 1) Average Inference Speed Average Cost Per Inference
0.030 = MOVIDIUS = MOVIDIUS
} l 250 = LOIHI ooos == LOIHI
0.007
* 200
o o 0.006
8 0.015 5 . .
= s voos Loihi provides
5" 3 extremely good
=4 .
0.010 § 2 0004 scallng VS
5 conventional
0005 E 0003 architectures as
‘ 5 - o002 network size
x X % ' grows by 50x
0.000 0.001 26x g4.0x p6.ax
LOIHI MOVIDIUS  JETSON I I I I
o A s . 0 0.000 l
Loihi is the most energy-efficient architecture 00 20 40 1.0 00 20 40 60 100
N (# neurons = N* 10 256 + 512) N (# neurons = N*10* 256 + 512)

for real-time inference (batchsize=1 case)

* Loihi provides 5-10x lower energy than closest conventional DNN architecture
« Caveats: batchsize=1 and reduced accuracy (90.6% SNN vs 92.7% DNN)

Results from: Blouw et al, “Benchmarking Keyword Spotting
Efficiency on Neuromorphic Hardware.” arXiv:1812.01739
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Case Study: LASSO Sparse Coding

The Spiking Locally Competitive Algorithm (S-LCA)
Problem Neural Network Structure
mZinE lx — Dz||5 + Az, Inhibition

'“F?“t T Sp!rse ‘(d'{ . d])Z]

Reconstruction  regularization ’

Implementation
D = NS

In the neural network
formulation, feature
neurons compete to
reconstruct image with
as few contributors as
possible

Tang et al, arxiv: 1705:05475
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Spiking LCA dynamics on Loihi

Original Reconstruction

LASSO Objective Over Time

Neuron index

Much faster

convergenceon a 1200

neuromorphic
architecture

Objective
=)
8

\

0 50 100 0 1 2 3
Time Step Neuron index (x 10%)

1200
1000 | &
800 f
600 | .y
400 |

200

Intense but very
brief period of
competition
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Loihi compared to Core i7 CPU

Loihi CPU* CPU/Loihi Ratios

e LCA time to solution FISTA time to solution Time to solution ratio
' 4
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Number of unknowns Number of unknowns Number of unknowns

* Intel Core i7-4790 3.6GHz w/ 32GB RAM. FISTA solver: SPAMS http://spams-devel.gforge.inria.fr/
Performance results are based on testing as of December 2018 and may not reflect all publicly available security updates. No
product can be absolutely secure.
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Loihi compared to Core i7 CPU (smaller problems)

Note: Previous examples
are all large convolutional
LASSO problems that
may be unfair to the
SPAMS FISTA solver since
itincludes no
optimizations for
convolutional problems.

10-50x faster

But general scaling trend
is clear across small-to-
large problems spanning
non-convolutional and
convolutional examples.

—

1,000-10,000x
lower energy

T ratio

E ratio

CPU/Loihi Ratios

Time to solution ratio

10°

Non-convolutional

104

103
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10? 102 . 104 10°
Energy ratio
106 o od
10°4 f
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,
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# unknowns

* Intel Core i7-4790 3.6GHz w/ 32GB RAM. FISTA solver: SPAMS http://spams-devel.gforge.inria.fr/
Performance results are based on testing as of December 2018 and may not reflect all publicly available security updates. No

product can be absolutely secure.

(prior examples)

100-1000x faster

10,000-100,000x
lower energy
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Next Steps: Generalizations & Learning

Unsupervised dictionary learning:

Lin, Tsung-Han, and Ping Tak Peter Tang. 2018. "Dictionary Learning by Dynamical
Neural Networks." arXiv preprint. https://arxiv.org/abs/1805.08952.

Yijing Watkins and Garret Kenyon —upcoming NICE talk & poster
Generalization to data manifold learning:

Pehlevan, Cengiz. 2019. "A Spiking Neural Network with Local Learning Rules Derived
From Nonnegative Similarity Matching." arXiv preprint.
https://arxiv.org/abs/1902.01429.

Hierarchical LCA for adversarial-robust inference:

Jacob M Springer, et al. “Classifiers Based on Deep Sparse Coding Architectures are
Robust to Deep Learning Transferable Examples.” arXiv preprint.
https://arxiv.org/abs/1811.07211
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Spike-based LSTMs — “LSNNs”

Performance comparison

Simple adaptive spiking model achieves LSTM-level
accuracy

* SNN reservoir augmented with adaptive neurons

* Thresholds rise on each spike, decay exponentially
% Highly energy-efficient adaptation

test accuracy (%)

regular spiking (R)

 Trained offline with BPTT (TensorFlow) e BT
. . 4’40; 1\ O’
* Achieves 96% accuracy on sequential | . I S |
MNIST, same as equivalent LSTMs o | \O First case of an
pd . SNN matching
* Runs on Loihi today with 94% accuracy © R4 *‘ | 440 LSTM accuracy
(o _d |
e y>40 OV
[Bellec et al, arXiv preprint arXiv:1803.09574] ;E(i e

adaptive (A)



*“Neuromorphic Backpropagation”

Numerous promising approaches:

« Eligibility Propagation
Bellec, et al (TU Graz), on arxiv Jan 25, 2019.

* Surrogate Gradient Learning
Mostafa, Neftci, Zenke (Tue/Wed),
on arxiv Jan 28, 2019.

* Dendritic cortical microcircuits approximate
the backpropagation algorithm
J Sacramento, et al. NeurlPS 2018.

Soon we will be able to train multi-layer
and recurrent LSNNs with local three-
factor learning rules on Loihi.

Error module is
trained offline with
BPTT in learning-

/ to-learn framework
error

module
visual
N\ target
2 \ O
3 e ~// <=
€0

Online error signals
rapidly train the
\ RSNN reservoir to
,,,,'f" learning match visual
v signals (supervised) targets

0] &1

_>

motor command

RSNN

[Bellec et al, arXiv preprint arXiv:1901.09049]
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SNN adaptive dynamic controller
implemented on Loihi allows a robot
arm to adjust in real time to nonlinear,
unpredictable changes in system
mechanicsiMi2],

Result outperforms standard PD & PID
control algorithms.

. %

Jaco? Workstation Loihi Hardware

=/ Adaptive Control of a Robot Arm Using Loihi

Error [m.s]

Accelerated Wear Simulation (~3 Years)

9.0 W PD Baseline
s PD Final
a5 ™ PD Gradual
“% Nengo Loihi 1k Gradual
5o @ Nengo Loihi 20k Gradual
’ s Nengo CPU 20k Gadual A
7.51
|
7.04
6.5 4
6.0 £ SN 1-«;:""" 8 -—A:!v-/‘%" e
5.5 :
0 10 20 30 40 50

Runs

Different control methods adapting to a gradual, linear increase in
friction, over the course of 50 runs. This simulates ~3 years of wear over
the course of 16.67 minutes of run time, a 90K times speed up. Only 20K

neurons on Loihi is able to successfully cope with this perturbation.

[1] DeWolf, T., Stewart, T. C., Slotine, J. J., & Eliasmith, C. (2016, November). A
spiking neural model of adaptive arm control. In Proc. R. Soc. B (Vol. 283, No.
1843, p. 20162134). The Royal Society.

[2] Eliasmith, “Building applications with next generation neuromorphic
hardware." NICE Workshop 2018



{ Solving Constraint Satisfaction Problems

SNN with noise stochastically searches to find
the minimum energy solution:

Variables represented by Winner-
Take-All (WTA) circuits

Minimization & Sampling from
probability distribution p(x)

Encode constraints into
interconnectivity between WTAs

Stochastic search via SNN
enables faster convergence than
pure gradient dynamics

— ]

p(z) x e E=)

0 p(x)
i E(x) I I
1

Example: 4-coloring of world map

100 T

T E=0 ...

5 %. Solutionfound! .. -~ .

c : . s W .

= 60 . )

Y : A

- 1

3 40

O

o

o 20

s b =S = o
200 400 . 600 800 1000
Iterations

~ 10us/step results in = 4ms time to
solution.

WIP: Self-checking validation network to stop
execution when solutions are found.

Jonke et at., “Solving Constraint Satisfaction Problems with Networks of Spiking Neurons.” Front. Neurosci. 2016
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Graph Search - Path Planning

Runtime comparison to best Robot Motion Loihi Representation
Djikstra optimizations:

+ Neuromorphic: O(L - VV)
* Standard: O(E)

For most nontrivial problems:
* L<<E
* V<<E

B

™

]

Neuromorphic solution uses

fine-grain parallelism an PJLARE T - .
temporal wavefront-driven e i Bl

H i ® Robot Location | 1 O Place Cells j I
cqmputatlon to potentlally. i iy s ]
provide great performance gains
for large problems.

Based on Ponulak F., Hopfield J.J. Rapid, parallel path planning DARPA S D R S Ite B

by propagating wavefronts of spiking neural activity. Front. (Data from Radish Robotics Dataset)
Comput. Neurosci. 2013. V. 7. Article N2 e98.
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Graph Search on Nahuku (32-chip Loihi System)

Increasing core parallelism with fixed chip count

Fixed 128-way core

parallelism.
Slowdown due to

increased barrier
sync time over 32
chips vs 1 chip

50x50x50 3D lattice

30.00

25.00

20.00

15.00

10.00

Microseconds per timestep

5.00

0.00

One Chip 32 Chips

One Chip
(1x cores)

Execution Time per Timestep

/

~3.9us (latest optimization)

32 Chips
(1x cores)

32 Chips
(2x cores)

32 Chips
(8x cores)

32 Chips
(16x cores)

32 Chips
(32x cores)

M Barrier Sync

H Neuron Updates Spiking Overhead Learning Overhead

Learning overhead
decreases with
increasing core

parallelism

Spike overhead
decreases, then
increases with
increasing core
parallelism

Performance results are based on
testing as of March 2019 and may
not reflect all publicly available
security updates. No product can
be absolutely secure.
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Searching Small World Networks with Loihi

Watts-Strogatz network model with rewiring probability 20%.

Runtime for 100,000 nodes Runtime for 10 edges per node

c +: 100 Loihi provides

& o® ¢ 0e®%0,y° §0s, 10 sublinear scaling .- :
= (%\ -8 30 ‘..‘ % up to ‘IM nodes ‘.'.. .......
-§ = 5 Loihi searches the  § 1
£5 g 20 R £ graph ~100x faster @ 100 1000 .- 10000 100000 1008000
Sao = ol than a Xeon = 01— 9. 0

S Eq e . E g . _

& ° 0.01 ’7, o NO75

™M o

0 0.001
N % i i ' l o ’ ! 03, Ss 10
sz ¢ I TR A R e P g
mSs 3 : i 1ML o o3 ., ! J; """
A cT9 T3 ". !3! .°'. ° ° 0.1100 1000 1oiog ........ i0od00 1008000
= (e} egveoeg._ 5 e
MGST o ! gv8°° 0 ' ® ‘ o 9 001 | @ e .
S~ m O " ° s oog® b A S L ' ]
O s = : o' ° "g!‘l. s - o 0.001 [ ..o s
S QNm b K (Djikstra’s Algorithm**) | 0.0001 8 T o« N1
v o 0 oo ° ¢ 0.00001 ®
X LY 0 50 100 150 200 250 Number of nodes
Number of edges per node . o
* Intel Xeon 6136 3.00 GHz w/ 32GB RAM. ** with NetworkX graph analytics library

Performance results are based on testing as of December 2018 and may not reflect all publicly available security updates. No product can be absolutely secure.
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https://networkx.github.io/documentation/networkx-1.10/overview.html

Olfaction-Inspired One Shot Learning

Olfactory System Olfactory Bulb Neural Circuit Spatiotemporal Attractor Model

P 9 9
\\’(‘ { T? V\ Granule
olf J—— i Cells
actory | GCs
Bulb — | 1 (GCs)
| Mitral
Olfactory 7
Cortex gt /--1»-\ /£ Cells (MCs)
5 Limbic System ( \
\: Entorhinal & S \% /
Cortex psifn.
T *-.\
Sensory
Neurons

Nabil Imam (Intel) with Thomas Cleland (Cornell) — submitted
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Outperforms Conventional Algorithms

Provides average of 8% accuracy
improvement vs deep autoencoder

40x more data efficient learning vs
backpropagation

Supports online learning (robust to
catastrophic forgetting)

Percent Correct

100

80

60

401

20'

Classification Accuracy

20%

Conventional
Algorithms

68%

61% I

60%

Raw Slgnal

SOM

88%
80%

| -
5 £
(@]
O =
5 |15
(@]
el 80
> O
< =
Q_ - —
) (@]
1) —
()

DAE EPL
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Time to solution (ms)

Excellent Scaling to Larger Network Sizes

Time Per Inference

10
a<
Near constant
61 computation time
4_
o-—----o--—--£>--—--e--—--a—----:}—--—-o-----c

2 4

0 | ' y y s T

20 40 60 80 100 120

Number of Cores

Performance results are based on testing as of December 2018 and
may not reflect all publicly available security updates. No product can
be absolutely secure.

Energy Consumption (my])

0.60

Energy Per Inference

0.55 1

0.50 -

0.45

0.40

0.35 4

0.30

40

60 80 100
Number of Cores

120
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Phasor Neural Networks

An emerging paradigm for SNN computation?

Idea: Represent neural activities with complex numbers

Offer benefits for associative memory capacity, backprop gradient
propagation, VSA factoring, among others.
Many SNN implementation benefits:
= Simple LIF implementation w/ different E/I decays
» Constant guaranteed sparse activity
» Synaptic delays provide non-trivial phase transformations
» Fast, bounded response time vs rate coding
Sparse SNN phasor generalization of Hopfield network provides up

to 6x higher information per synapse vs real-valued Hopfield
network.

EP Frady, F Sommer, “Robust computation with rhythmic spike patterns.”
arXiv:1901.07718

Synapse 1:

Synapse 2:
ynap N \/‘\,_

0.6

= 0.5}

0.4
0.3

Informatio

Sparse Phasor
Hopfield Network
73

0.2}

- Standard
. Hopfield /./\

01k
0.0 &

00 10? 107
Patterns Stored (M)
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The Frontier Ahead

Advancing from Compelling Example Results to Valuable Real-World Technologies

Inference and learning of sparse feature
representations

Adaptive dynamic control

« Anomaly detection for security and
Video and speech recognition industrial monitoring

Event-based camera processing * Optimization: Constraint Satisfaction,

_ QUBO, Convex optimization
Chemosensing

* Autonomy: SLAM, Planning, closed-
loop behavior

Low Energy Low Latency Adaptive Batch Size = 1 High Cost
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