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Neuromorphic Computing Exploration Space
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Competitive
Computer

Architectures

Research Goals:
• Broad class of brain-inspired 

computation
• Efficient hardware 

implementations
• Scalable from small to large 

problems and systems
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Examples:
• Online and lifelong learning 
• Learning without cloud assistance
• Learning with sparse supervision
• Understanding spatiotemporal data
• Probabilistic inference and learning
• Sparse coding/optimization
• Nonlinear adaptive control (robotics)
• Pattern matching with high occlusion
• SLAM and path planning
• Dynamical systems modeling

Spiking Neural Networks

“Deep Learning” / 
Artificial Neural Networks
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Some Principles of Neural Computation

Event-driven computation
with time

Low precision and stochastic Adaptive, self-modifying

Fine-grained parallelism
with massive fanout
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Why Spikes?
Findings from our research

1) Sparse communication in time optimizes energy efficiency (bits/J vs bits/s)

2) Spikes efficiently compute many rate-based models

3) Spikes provide efficient and natural processing of temporal data

4) Spikes support event-based algorithms that have nothing to do with rates

5) Spikes (surprisingly) efficiently implement phasor networks

In all examples studied so far, benefits vs conventional architectures
increase with increasing problem scale



Integrated
Memory + Compute

Neuromorphic Architecture

Our Loihi research chip
Key Properties

 128 neuromorphic cores supporting up to 128k 
neurons and 128M synapses with an advanced 
spiking neural network feature set.

 Supports highly complex neural network 
topologies

 Scalable on-chip learning capabilities to support 
an unprecedented range of learning algorithms

 Fully digital asynchronous implementation

 Fabricated in Intel’s 14nm FinFET process
technology

Davies et al, “Loihi: A Neuromorphic Manycore Processor 
with On-Chip Learning.” IEEE Micro, Jan/Feb 2018.
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Mesh Operation: Fine-Grained Synchronization 

Time step T begins.

Cores update dynamic 
neuron state and 

evaluate firing thresholds

Above-threshold 
neurons send spike 

messages to fanout cores

(Two neuron firings shown.)

All neurons that fire in 
time T route their spike 

messages to all 
destination cores.

Barrier Synchronization
messages exchanged 

between all cores.

When complete, time 
advances to time step 

T+1.

N-bound
Messages

S-bound
Messages

Barrier synchronization 
wavefronts advance time 

to T+1

1 2 3 4 5 6 7 8 9 10
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Learning with Synaptic Plasticity

• Local learning rules – essential property for 
efficient scalability

• Rules derived by optimizing an emergent 
statistical objective

• Plasticity on wide range of time scales for 

 Immediate supervised (labelled) learning

 Unsupervised self-organization

 Working memory

 Reinforcement-based delayed feedback

Wx,y

x y

z

𝐸 = 𝑜 − 𝑠

o

Supervision
signal

Learning rules for weight Wx,y

may only access presynaptic 
state x and postsynaptic state y

Reward spikes may be used to 
distribute graded 
reward/punishment values to a 
particular set of axon fanouts
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Loihi’s Trace-Based Programmable Learning

x1(t)

y1(t)

x2(t)

y2(t)

τ=20

τ=20

τ=200

τ=200

𝑤′ = 𝑤 + 

𝑖=1

𝑁𝑃

𝑆𝑖 

𝑗=1

𝑛𝑖

(𝑉𝑖,𝑗 + 𝐶𝑖,𝑗)

w

Short time scale trace correlations 
=> STDP regime

Long time scale traces respond 
to correlations in activity rates

Weight, Delay, and Tag learning rules 
programmed as sum-of-product equations

Variable Dependencies
X0, Y0, X1, Y1, X2, Y2, R1

Wgt, Delay, Tag, etc.

Synaptic Variables
Wgt, Delay, Tag
(variable precision)Traces are low precision (7-9b) 

and may decay stochastically for 
implementation efficiency

Presynaptic spike
‘X’ traces

Postsynaptic spike
‘Y’ traces

Trace: Exponentially 
filtered spike train

Intel Confidential



10

Loihi Systems

Q4 2017
Wolf Mountain 

Remote Access
4 Loihi/Board

Q3 2018
Kapoho Bay

1-2 Loihi
DVS interface

USB host interface

Q2 2018
Nahuku

Arria10 Expansion Board
For cloud & local use

8-32 Loihi/Board

Q2 2019
Pohoiki Springs 

Remote Access
Up to 768 chips
(100M neurons)
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Nx SDK Software Architecture

3rd party FrameworksComputational Modules

Compiler

Nx Net API

Nengo

LCA LSNN CSP

EONS NRP

Spiking Neural NetworkSnips

Nx Runtime

Graph
Search

EPL
PyNN TensorFlow ROS, etc



Intel Neuromorphic Research COmmunity

2019 20202018

ICONS

NICE

Iceland

INRC

44+ active projects, 50+ organizations

Iceland Workshop (Sep 28 – Oct 2) attended by 62 researchers

Winter Workshop (Feb 11-15) attended by 90+ researchers

Collaborating to Accelerate Progress

Algorithmic Research
Applications Research

ICONS

Telluride 2019

Portland

Riken WoNC

NICE

TBD

Capocaccia
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INRC Winter Workshop Attendance

Applied Brain Research
U. Sherbrooke

AFRL/RI, SRC
Syracuse, RIT

Argonne National Lab
Illionois Inst. Technology

U. Ghent

INI / ETH Zurich

Hungarian 
Academy of 
Sciences

Rutgers, Villanova
U Penn, Penn State
NJIT

AFRL/RY, U. Dayton
Purdue,

Intel
WSU Vancouver

PSU
UC Berkeley

Accenture
NASA Ames

UC Irvine, UCSD
MITRE

Sandia National Lab

Los Alamos Nat’l Lab

Texas A&M

National University
of Singapore

KCL
Brunel

UT Knoxville, ORNL

Aerospace Corp
Disney

U. Idaho

Duke
Case Western Reserve



Join the community
E-mail: inrc_interest@intel.com
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SNN Algorithms Discovery and Development

Competitive Computer
Architectures

M
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g Neuroscience

New Ideas Guided by Neuroscience

• Olfaction-inspired rapid learning
• Dynamic Neural Fields
• SLAM
• Evolutionary search
• Cortical models

3.i

Mathematically Formalized

• Locally Competitive Algorithm for LASSO
• Neural Engineering Framework (NEF)
• Stochastic SNNs for solving CSPs
• Parallel graph search
• Phasor associative memories
• Random diffusion walkers

3.m

Deep Learning Derived Approaches • DNN -> SNN conversion
• SNN backpropagation
• Online SNN pseudo-backprop2
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DNN-to-SNN conversion for keyword spotting

• Loihi provides 5-10x lower energy than closest conventional DNN architecture

• Caveats: batchsize=1 and reduced accuracy (90.6% SNN vs 92.7% DNN)
Results from: Blouw et al, “Benchmarking Keyword Spotting 
Efficiency on Neuromorphic Hardware.” arXiv:1812.01739

Loihi is the most energy-efficient architecture
for real-time inference (batchsize=1 case)

Loihi provides 
extremely good 

scaling vs 
conventional 

architectures as 
network size 
grows by 50x
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Case Study: LASSO Sparse Coding

The Spiking Locally Competitive Algorithm (S-LCA)

min
𝑧

1

2
𝑥 − 𝐷𝑧 2

2 + 𝜆 𝑧 1

Problem

Input Sparse 
regularizationReconstruction

Implementation

𝑥

𝑧

Tang et al, arxiv: 1705:05475

𝐷 = zi zj….

𝑥1 𝑥2

𝒅𝒊 ⋅ 𝒙

- 𝒅𝑖
𝑇 ⋅ 𝒅𝑗 𝑧𝑗

Inhibition

Excitation

Neural Network Structure
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Spiking LCA dynamics on Loihi

LASSO Objective Over Time

Original Reconstruction Spikes

Much faster 
convergence on a 

neuromorphic 
architecture

Intense but very 
brief period of 
competition



Loihi compared to Core i7 CPU
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Loihi CPU* CPU/Loihi Ratios

>10,000x faster

~1,000,000x
lower energy

1010 – 1011

lower EDP

Time:

Energy:

Energy 
x Time:

* Intel Core i7-4790 3.6GHz w/ 32GB RAM. FISTA solver: SPAMS http://spams-devel.gforge.inria.fr/
Performance results are based on testing as of December 2018 and may not reflect all publicly available security updates. No 
product can be absolutely secure. 



Loihi compared to Core i7 CPU (smaller problems)
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100-1000x faster

10,000-100,000x
lower energy

* Intel Core i7-4790 3.6GHz w/ 32GB RAM. FISTA solver: SPAMS http://spams-devel.gforge.inria.fr/
Performance results are based on testing as of December 2018 and may not reflect all publicly available security updates. No 
product can be absolutely secure. 

CPU/Loihi Ratios

Non-convolutional

Convolutional

# unknowns

10-50x faster

1,000-10,000x 
lower energy

Note: Previous examples 
are all large convolutional 
LASSO problems that 
may be unfair to the 
SPAMS FISTA solver since 
it includes no 
optimizations for 
convolutional problems.

But general scaling trend 
is clear across small-to-
large problems spanning 
non-convolutional and 
convolutional examples.

(prior examples)
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Next Steps: Generalizations & Learning

Unsupervised dictionary learning:

Lin, Tsung-Han, and Ping Tak Peter Tang. 2018. "Dictionary Learning by Dynamical 
Neural Networks." arXiv preprint. https://arxiv.org/abs/1805.08952.

Yijing Watkins and Garret Kenyon – upcoming NICE talk & poster

Generalization to data manifold learning:

Pehlevan, Cengiz. 2019. "A Spiking Neural Network with Local Learning Rules Derived 
From Nonnegative Similarity Matching." arXiv preprint. 
https://arxiv.org/abs/1902.01429.

Hierarchical LCA for adversarial-robust inference:

Jacob M Springer, et al. “Classifiers Based on Deep Sparse Coding Architectures are 
Robust to Deep Learning Transferable Examples.” arXiv preprint. 
https://arxiv.org/abs/1811.07211

https://arxiv.org/abs/1805.08952
https://arxiv.org/abs/1902.01429
https://arxiv.org/abs/1811.07211
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Simple adaptive spiking model achieves LSTM-level 
accuracy

• SNN reservoir augmented with adaptive neurons

• Thresholds rise on each spike, decay exponentially
 Highly energy-efficient adaptation

• Trained offline with BPTT (TensorFlow)

• Achieves 96% accuracy on sequential
MNIST, same as equivalent LSTMs

• Runs on Loihi today with 94% accuracy

Spike-based LSTMs – “LSNNs”

[Bellec et al, arXiv preprint arXiv:1803.09574]

First case of an
SNN matching 
LSTM accuracy



23

Numerous promising approaches:

• Eligibility Propagation
Bellec, et al (TU Graz), on arxiv Jan 25, 2019.

• Surrogate Gradient Learning
Mostafa, Neftci, Zenke (Tue/Wed),
on arxiv Jan 28, 2019.

• Dendritic cortical microcircuits approximate 
the backpropagation algorithm
J Sacramento, et al. NeurIPS 2018.

“Neuromorphic Backpropagation”

Soon we will be able to train multi-layer
and recurrent LSNNs with local three-

factor learning rules on Loihi.
[Bellec et al, arXiv preprint arXiv:1901.09049]

Online error signals 
rapidly train the 

RSNN reservoir to 
match visual 

(supervised) targets

Error module is 
trained offline with 
BPTT in learning-

to-learn framework
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SNN adaptive dynamic controller 
implemented on Loihi allows a robot 
arm to adjust in real time to nonlinear, 
unpredictable changes in system 
mechanics[1][2].

Result outperforms standard PD & PID 
control algorithms.

Adaptive Control of a Robot Arm Using Loihi

Different control methods adapting to a gradual, linear increase in 
friction, over the course of 50 runs. This simulates ~3 years of wear over 
the course of 16.67 minutes of run time, a 90K times speed up. Only 20K 

neurons on Loihi is able to successfully cope with this perturbation. 

[1] DeWolf, T., Stewart, T. C., Slotine, J. J., & Eliasmith, C. (2016, November). A 

spiking neural model of adaptive arm control. In Proc. R. Soc. B (Vol. 283, No. 

1843, p. 20162134). The Royal Society.

[2] Eliasmith, “Building applications with next generation neuromorphic 

hardware." NICE Workshop 2018
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Solving Constraint Satisfaction Problems

SNN with noise stochastically searches to find 
the minimum energy solution:

Variables represented by Winner-
Take-All (WTA) circuits

Encode constraints into 
interconnectivity between WTAs

Minimization ⇔ Sampling from 
probability distribution 𝑝(𝑥)

Stochastic search via SNN 
enables faster convergence than 

pure gradient dynamics

Jonke et at., “Solving Constraint Satisfaction Problems with Networks of Spiking Neurons.” Front. Neurosci. 2016

lo
g
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n
)

Iterations

𝑬 = 𝟎
Solution found!

Example: 4-coloring of world map

≈ 10𝜇𝑠/step results in ≈ 4𝑚𝑠 time to 
solution.

WIP: Self-checking validation network to stop 
execution when solutions are found.
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Graph Search – Path Planning

Robot Motion Loihi Representation

DARPA SDR Site B
(Data from Radish Robotics Dataset)

Runtime comparison to best 
Djikstra optimizations:

• Neuromorphic: O(𝐿 ⋅ 𝑉)
• Standard: O(𝐸)

For most nontrivial problems:
• L<<E
• V<<E

Neuromorphic solution uses 
fine-grain parallelism an 

temporal wavefront-driven 
computation to potentially 

provide great performance gains 
for large problems.

Based on Ponulak F., Hopfield J.J. Rapid, parallel path planning 
by propagating wavefronts of spiking neural activity. Front. 
Comput. Neurosci. 2013. V. 7. Article № e98.
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Graph Search on Nahuku (32-chip Loihi System)

Learning overhead 
decreases with 
increasing core 

parallelism

Spike overhead 
decreases, then 
increases with 
increasing core 

parallelism

One Chip 32 Chips

~3.9us (latest optimization)

Fixed 128-way core 
parallelism. 

Slowdown due to 
increased barrier 
sync time over 32 

chips vs 1 chip

50 50

50

50x50x50 3D lattice

Increasing core parallelism with fixed chip count

Performance results are based on 
testing as of March 2019 and may 
not reflect all publicly available 
security updates. No product can 
be absolutely secure. 
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Searching Small World Networks with Loihi
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Loihi searches the 
graph ~100x faster 

than a Xeon

Loihi provides 
sublinear scaling 
up to 1M nodes

(Djikstra’s Algorithm**)

* Intel Xeon 6136 3.00 GHz w/ 32GB RAM. ** with NetworkX graph analytics library
Performance results are based on testing as of December 2018 and may not reflect all publicly available security updates. No product can be absolutely secure. 

https://networkx.github.io/documentation/networkx-1.10/overview.html
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Olfactory System

Olfactory 
Bulb

Olfactory 
Cortex

Entorhinal 
Cortex

Limbic System

Olfactory Bulb Neural Circuit 

Mitral 
Cells (MCs)

Granule
Cells 
(GCs)

Sensory 
Neurons

Spatiotemporal Attractor Model

Nabil Imam (Intel) with Thomas Cleland (Cornell) – submitted

Olfaction-Inspired One Shot Learning



Outperforms Conventional Algorithms

Provides average of 8% accuracy 
improvement vs deep autoencoder

40x more data efficient learning vs 
backpropagation

Supports online learning (robust to 
catastrophic forgetting)
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Excellent Scaling to Larger Network Sizes
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Time Per Inference Energy Per Inference

Near constant 
computation time

Performance results are based on testing as of December 2018 and 
may not reflect all publicly available security updates. No product can 
be absolutely secure. 
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Phasor Neural Networks

Idea: Represent neural activities with complex numbers

Offer benefits for associative memory capacity, backprop gradient 
propagation, VSA factoring, among others.

Many SNN implementation benefits:

 Simple LIF implementation w/ different E/I decays

 Constant guaranteed sparse activity

 Synaptic delays provide non-trivial phase transformations

 Fast, bounded response time vs rate coding

Sparse SNN phasor generalization of Hopfield network provides up 
to 6x higher information per synapse vs real-valued Hopfield 
network.

EP Frady, F Sommer, “Robust computation with rhythmic spike patterns.” 
arXiv:1901.07718

An emerging paradigm for SNN computation?

Sparse Phasor 
Hopfield Network

Standard
Hopfield
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• Inference and learning of sparse feature 
representations

• Video and speech recognition

• Event-based camera processing

• Chemosensing

• Adaptive dynamic control

• Anomaly detection for security and 
industrial monitoring

• Optimization: Constraint Satisfaction, 
QUBO, Convex optimization

• Autonomy: SLAM, Planning, closed-
loop behavior 

The Frontier Ahead

Advancing from Compelling Example Results to Valuable Real-World Technologies

Low Energy Low Latency Adaptive Batch Size = 1 High Cost



Thank You!

Email inrc_interest @ intel.com for more information 


