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ABSTRACT

Associative memory using fast weights is a short-term memory mechanism that
substantially improves the memory capacity and time scale of recurrent neural
networks (RNNs). As recent studies introduced fast weights only to regular RNNss,
it is unknown whether fast weight memory is beneficial to gated RNNs. In this
work, we report a significant synergy between long short-term memory (LSTM)
networks and fast weight associative memories. We show that this combination,
in learning associative retrieval tasks, results in much faster training and lower test
error, a performance boost most prominent at high memory task difficulties.

Short paper under review, full work in progress




What should the role of biological inspiration be?

Principles Details
To constrain To optimize

« Algorithm researchers to take the responsibility of guiding HW/SW tool design.
« Tools to support flexible algorithm research needs. «& Loihi!

Is there a philosophical rift between neuromorphic
engineering and deep learning (or ML in general)?
 Neuromorphic algorithm researchers to design based on first principle. g

e Deep learning researchers to be inspired by biological designs.



Deep learning: empirical laws in the realm of magic

First Law: For any network structure, optimizer or application, there exist at
least one paper on the subject.

Second Law: For any pair-wise combination of network structure, optimizer and
application, there exist at least one paper on the subject.

Third Law: Any exception of the previous two laws is an (almost) guaranteed
paper.

Remark 1: Combinatorial alchemy is fruitful (caveat: for practice, not theory).

Remark 2: Why it is often unreasonably effective should be a subject of future
theoretic investigations.



Recurrent neural nets (RNNSs)
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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*“Memory” in RNNs

Hidden states Recurrent weights

= Fast = Slow

= Capacity scales linearly with number of = Capacity scales quadratically with
hidden units number of hidden units




Limitations of vanilla RNNs

= The memory capacity problem

— Short-term memory maintained by activations scales linearly with number of
hidden units

= The memory time scale problem

— Difficult to support memory at long and/or diverse time scales

= The training problem

— Vanishing/exploding gradients



Biological inspiration: multiple time scales

Fast %————* Slow

Neural activities A myriad of cellular and circuit Synaptic weights

e mechanisms . , i}
= “Activations = “Recurrent weights

= Cellular mechanisms, e.g. calcium
dynamics, intracellular signaling, ...

= Circuit mechanisms, e.g.
temporally diverse connections,
delays, oscillations, ...

= H?‘?’?”



Two approaches toward overcoming RNNs’ limitations

= “Circuit™; clever design of recurrent network topologies = e.g. gated recurrent
memory cells

= “Cellular”: enhancement with differentiable memory mechanisms - e.g. fast
weights, NTM, ...



Gated RNNs: e.g. long short-term memory (LSTM)
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The origin of fast weight
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Using Fast Weights to Debluf Old Memories

Geoffrey E. Hinton and David C. Plaut

Computer Science Department
Camegie-Mellon University

Abstract

Connectionist models usually have a single weight on each connection. Some interesting new
properties emerge if each connection has two weights: A slowly changing, plastic weight which stores
long-term knowledge and a fastchanging, elastic weight which stores temporary knowledge and
spontaneously decays towards zero. If a network leams a set of associations and then these associations
are "blurred” by subsequent learning, all the criginal associations can be "deblurred” by rehearsing on
just a few of them. The rehearsal allows the fast weights to take on values that temporarily cancel out
the changes in the slow weights caused by the subsequent leaming.

Hinton & Plaut 1987
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The origin of fast weight

REDUCING THE RATIO BETWEEN LEARNING COM-
PLEXITY AND NUMBER OF TIME VARYING VARIABLES
IN FULLY RECURRENT NETS

In Proceedings of the International Conference on Artificial Neural Networks ICANN’93, Amsterdam,
pages 460-463. Springer, 1993.

Communicated by Fernando Pineda

Learning to Control Fast-Weight Memories: 3. Schmidhuber

An Alternative to Dynamic Recurrent Networks Institut fiir Informatik
Technische Universitat Miinchen
Jiirgen Schmidhuber* Arcisstr. 21, 8000 Miinchen 40, Germany

Institut fiir Informatik, Technische Universitit Miinchen,

Arcisstr. 21, 8000 Miinchen 2, Germany ABSTRACT. Let m be the number of time-varying variables for storing temporal events in a fully

recurrent sequence processing network. Let Ryme be the ratio between the number of operations per
time step (for an exact gradient based supervised sequence learning algorithm), and m. Let Rspgce be
Previous algorithms for supervised sequence learning are bz  sj¢ rutio between the mazimum number of storage cells necessary for learning arbitrary sequences,
dynamic recurrent networks. This paper describes an alternati  4nd m. With conventional recurrent nets, m equals the number of units. With the popular ‘real time
of gradient-based systems consisting of two feedforward nets thi  recurrent learning algorithm’ (RTRL), Ryime = O(m?®) and Rgpace = O(m?). With ‘back-propagation
to deal with temporal sequences using fast weights: The first n¢  through time’ (BPTT), Rijme = O(m) (much better than with RTRL) and Rspace is infinite (much
to produce context-dependent weight changes for the second nel  worse than with RTRL). The contribution of this paper is a novel fully recurrent network and a
weights may vary very quickly. The method offers the poten corresponding exact gradient based learning algorithm with Rijme = O(m) (as good as with BPTT)
STM storage efficiency: A single weight (instead of a full-fledge  4nd Rgpace = O(m?) (as good as with RTRL).

may be sufficient for storing temporal information. Various I
methods are derived. Two experiments with unknown time ‘delays™
illustrate the approach. One experiment shows how the system can be
used for adaptive temporary variable binding.

-

Schmidhuber 1992, 1993
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Fast weight RNNs
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Figure 1: The fast associative memory model.
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Figure 2: Comparison of the test log likelihood on

the associative retrieval task with 50 recurrent hidden

units.
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Note: there is a rich literature on many different types of differentiable memory
enhancement of DNNs before/after Ba et al. 2016: attention nets, memory nets,

NTM, variations on fast weights...

Baetal. 2016
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Question

How do gated RNNs such as LSTM interact with associative memory
mechanisms like fast weights?

e Redundant?
« Competitive?

e Synergistic?



Fast weight LSTM
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Major differences from fast-weight RNN (Ba et al. 2016) and regular LSTM
= No need for multiple settling iterations of fast weights
» Simultaneous layer normalization on input and hidden states

» Replaced hyperbolic tangent with rectified linear

Keller et al. 2018



Associative retrieval task (ART)

c9k8j3f1?7c = 9 (K = 8)
j0absb5z27??a — 5

Retrieval Baetal. 2016

Modified associative retrieval task (mART)

9kjf9831??c — 9 (k=g
jasz055277a — 5

Retrieval

Keller et al. 2018



Results: accuracy

Task ART mART

# Hidden Model K=8| K=30|| K=8 | K=16 || # Parameters
LN-LSTM 37.8 22.7 38.2 29.5 19k

h = 20 FW-RNN 98.7 95.7 55.5 30.3 12k
FW-LSTM 99.6 97.5 96.3 38.9 19k

LN-LSTM 95.4 21.0 34.8 25.7 43k

h = 50 FW-RNN 100.0 100.0 90.9 29.0 20k
FW-LSTM 100.0 100.0 99.4 93.3 43k

LN-LSTM 97.6 18.4 33.4 22.5 100k

h = 100 FW-RNN 100.0 100.0 91.9 30.5 38k
FW-LSTM 100.0 100.0 99.9 92.6 100k

Keller et al. 2018



Results: speed of learning
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Summary

We demonstrate a strong synergy between fast weight associative memory
and gated recurrent nets.

e LSTM with fast weight associative memory trains much faster and achieves
lower test error in associative retrieval tasks.

e Fast weight LSTM remains highly performant at high task memory difficulties
where both LSTM and fast-weight-enhanced regular RNN utterly fail.

e This is true even for fast weight LSTMs with fewer parameters than
competing models.
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