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Machine Room with 20 BrainScaleS Wafer Modules



BrainScaleS Wafer Module

◮ 20cm Wafer, 180nm CMOS

◮ Main PCB

◮ 48 Kintex-7 FPGAs (TU Dresden)

◮ Power supplies

◮ Aux. Boards (e.g. for analog readout)

◮ In development for > 10 years



Analog Neuron Circuit

◮ Adaptive Exponential Integrate and

Fire (AdEx) Model

◮ Dedicated circuits in every neuron for:

◮ resting potential
◮ reset potential
◮ threshold potential
◮ reversal potentials
◮ refractory period
◮ membrane time constant
◮ synaptic time constants
◮ adaption
◮ exponential term

◮ Accelerated dynamics compared to

biological real-time:

---->

C R

I

τ = C · R, τhw
τbio

= 10−4

τhw = 1µs ⇒ τbio = 10ms



HICANN: High Input Count Analog Neural Network Chip

◮ 512 analog neurons, 110000 plastic synapses

◮ Digital communication → mixed-signal system

◮ Sparse crossbar switches connecting busses →

programmable network connections

◮ Analog parameter storage (floating gates)

◮ Postprocessing (IZM Berlin) → wafer scale networks



From Transistors to Wafer



Configuration and Calibration

Configuration:

◮ Large configuration space per HICANN:

> 10000 parameters

◮ Floating gate analog storage:

◮ Voltages (max. 1800mV)
◮ Currents (max. 2500nA)

◮ Both programmed via a DAC
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Calibration:

◮ Analog circuits are subject to process dependent device mismatch, i.e. variations

from one transistor to the other

◮ For same value of supplied parameter, the neuron response varies

◮ For all neurons and parameters: set DAC values, measure and fit



pyNN: The Network Description Language

◮ PyNN is a simulator independent network description language

◮ Programs can be executed on different simulators and different hardware without

(large) changes

import pyhmf as pynn

# import pyNN. nest as pynn

stimulus = pynn. Population (1 ,

pynn. SpikeSourceArray , {

’ spike_times ’ : exc_spike_times})

pop = pynn. Population (1 ,

pynn. IF_cond_exp ,

neuron_parameters)

pynn. Projection ( stimulus ,

pop, con , target=’ excitatory ’ )
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Mapping a Network to Hardware



MNIST Handwritten Digit Recognition with a Deep Neural Network
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◮ Fully-connected feed forward network

◮ 100+ 15+ 15+ 5 = 135 neurons, 3700 synapses

(Schmitt and Klaehn et al., 2017)



In-The-Loop Training

◮ Conversion to spiking neurons: accuracy reduced to 72+12
−10%

◮ Continue training with the hardware in the loop: accuracy recovered to 95+1
−2%



Raster Plot after In-The-Loop Training



Floating Gate Time Stability



Solving the Constraint Satisfaction Problem Sudoku

◮ Winner-take-all structure represent Sudoku rules

(Jonke et al., 2016), (Guerra et al., 2017)

◮ Minimally represent each cell with 4 neurons → 4× 4× 4 = 64 neurons, 1000

synapses

(A. Kugele, master thesis, 2018)



Training the WTA motifs (left: before, right: after training)



Before Training



After Training



Performance on Solving Sudokus

◮ Increased performance after training

◮ Sudokus with 8 (of 16) empty cells safely solved



Time to First Solution (left: untrained, right: trained)

◮ Time to first solution is greatly decreased after training



Neural Sampling (Buesing et al., 2011), (Petrovici et al., 2016)



Sampling from Restricted Boltzmann Machines

◮ Stochasticty supplied by a kind of Sea-of-Noise network (Jordon et al., 2017)

◮ Experimental results (Kungl et al., 2018 in preparation)



Training an Example Network

◮ Train the hardware in the loop with the wake-sleep algorithm (Hinton et al., 1995)



Training an Example Network

◮ Train the hardware in the loop with the wake-sleep algorithm (Hinton et al., 1995)



Datasets

◮ MNIST (LeCun et al., 1998)

◮ Fashion-MNIST (Xiao et al., 2017)



Classification (left: MNIST, right: Fashion-MNIST)
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◮ MNIST: 0 1 4 7

◮ Fashion-MNIST: T-shirt/top, Trouser, Sneaker

◮ 400 Sea-of-Noise, 200 sampling neurons (visible 12× 12, hidden, label), 50000

synapses



Pattern Completion (MNIST)



Pattern Completion (Fashion-MNIST)



Lucid Dreaming (MNIST)

◮ By clamping the label layer, the visible layer can be driven to dream of the given

class



Summary

◮ Experiments on the BrainScaleS Wafer Scale System:

◮ Spiking Deep Neural Network classifies MNIST
◮ Winner-Take-All-like units solve the Constraint Satisfaction Problem Sudoku
◮ Sea-of-Noise driven Restricted Boltzmann Machine classifies, completes patterns and

dreams

◮ All rely on training the hardware in the loop; on-chip learning/calibration work in

progress

◮ Accelerated dynamics (10000× faster w.r.t. biology) pay off for inference and

generation

◮ You are welcome to request access at http://www.neuromorphic.eu

http://www.neuromorphic.eu
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