
Experiments on BrainScaleS

Electronic Vision(s)

Kirchhoff-Institute for Physics

Heidelberg University

2018-03-01

Machine Room with 20 BrainScaleS Wafer Modules

BrainScaleS Wafer Module

◮ 20cm Wafer, 180nm CMOS

◮ Main PCB

◮ 48 Kintex-7 FPGAs (TU Dresden)

◮ Power supplies

◮ Aux. Boards (e.g. for analog readout)

◮ In development for > 10 years

Analog Neuron Circuit

◮ Adaptive Exponential Integrate and

Fire (AdEx) Model

◮ Dedicated circuits in every neuron for:

◮ resting potential
◮ reset potential
◮ threshold potential
◮ reversal potentials
◮ refractory period
◮ membrane time constant
◮ synaptic time constants
◮ adaption
◮ exponential term

◮ Accelerated dynamics compared to

biological real-time:

---->

C R

I

τ = C · R, τhw
τbio

= 10−4

τhw = 1µs ⇒ τbio = 10ms

HICANN: High Input Count Analog Neural Network Chip

◮ 512 analog neurons, 110000 plastic synapses

◮ Digital communication → mixed-signal system

◮ Sparse crossbar switches connecting busses →

programmable network connections

◮ Analog parameter storage (floating gates)

◮ Postprocessing (IZM Berlin) → wafer scale networks

From Transistors to Wafer

Configuration and Calibration

Configuration:

◮ Large configuration space per HICANN:

> 10000 parameters

◮ Floating gate analog storage:

◮ Voltages (max. 1800mV)
◮ Currents (max. 2500nA)

◮ Both programmed via a DAC

(0. . . 1023)
200 300 400 500 600 700 800 900

DAC

0

5

10

15

20

25

sy
n

a
p

ti
c

ti
m

e
co

n
st

a
n

t
[m

s]

10
0

10
1

synaptic time constant [ms]

0

10

20

30

40

50

60

70

80

90

#

Calibration:

◮ Analog circuits are subject to process dependent device mismatch, i.e. variations

from one transistor to the other

◮ For same value of supplied parameter, the neuron response varies

◮ For all neurons and parameters: set DAC values, measure and fit

pyNN: The Network Description Language

◮ PyNN is a simulator independent network description language

◮ Programs can be executed on different simulators and different hardware without

(large) changes

import pyhmf as pynn

import pyNN. nest as pynn

stimulus = pynn. Population (1 ,

pynn. SpikeSourceArray , {

’ spike_times ’ : exc_spike_times})

pop = pynn. Population (1 ,

pynn. IF_cond_exp ,

neuron_parameters)

pynn. Projection (stimulus ,

pop, con , target=’ excitatory ’)

500 1000 1500 2000 2500

time [ms]

−50

−40

−30

−20

−10

0

m
e
m

b
ra

n
e

p
o
te

n
ti

a
l

[m
V

]

BrainScaleS

Simulation

Mapping a Network to Hardware

MNIST Handwritten Digit Recognition with a Deep Neural Network

0 7 14 21 28
0

7

14

21

28

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

◮ Fully-connected feed forward network

◮ 100+ 15+ 15+ 5 = 135 neurons, 3700 synapses

(Schmitt and Klaehn et al., 2017)

In-The-Loop Training

◮ Conversion to spiking neurons: accuracy reduced to 72+12
−10%

◮ Continue training with the hardware in the loop: accuracy recovered to 95+1
−2%

Raster Plot after In-The-Loop Training

Floating Gate Time Stability

Solving the Constraint Satisfaction Problem Sudoku

◮ Winner-take-all structure represent Sudoku rules

(Jonke et al., 2016), (Guerra et al., 2017)

◮ Minimally represent each cell with 4 neurons → 4× 4× 4 = 64 neurons, 1000

synapses

(A. Kugele, master thesis, 2018)

Training the WTA motifs (left: before, right: after training)

Before Training

After Training

Performance on Solving Sudokus

◮ Increased performance after training

◮ Sudokus with 8 (of 16) empty cells safely solved

Time to First Solution (left: untrained, right: trained)

◮ Time to first solution is greatly decreased after training

Neural Sampling (Buesing et al., 2011), (Petrovici et al., 2016)

Sampling from Restricted Boltzmann Machines

◮ Stochasticty supplied by a kind of Sea-of-Noise network (Jordon et al., 2017)

◮ Experimental results (Kungl et al., 2018 in preparation)

Training an Example Network

◮ Train the hardware in the loop with the wake-sleep algorithm (Hinton et al., 1995)

Training an Example Network

◮ Train the hardware in the loop with the wake-sleep algorithm (Hinton et al., 1995)

Datasets

◮ MNIST (LeCun et al., 1998)

◮ Fashion-MNIST (Xiao et al., 2017)

Classification (left: MNIST, right: Fashion-MNIST)

0 10 20 30 40 50

number of iterations [1]

0.5

0.6

0.7

0.8

0.9

1.0

cl
as

si
fic

at
io

n
ra

ti
o

[1
]

abstract hardware0

1

cl
as

si
fic

at
io

n
ra

ti
o

0 10 20 30 40 50

number of iterations [1]
0.75

0.80

0.85

0.90

0.95

1.00

1.05

cl
as

si
fic

at
io

n
ra

ti
o

[1
]

abstract hardware0

1

cl
as

si
fic

at
io

n
ra

ti
o

◮ MNIST: 0 1 4 7

◮ Fashion-MNIST: T-shirt/top, Trouser, Sneaker

◮ 400 Sea-of-Noise, 200 sampling neurons (visible 12× 12, hidden, label), 50000

synapses

Pattern Completion (MNIST)

Pattern Completion (Fashion-MNIST)

Lucid Dreaming (MNIST)

◮ By clamping the label layer, the visible layer can be driven to dream of the given

class

Summary

◮ Experiments on the BrainScaleS Wafer Scale System:

◮ Spiking Deep Neural Network classifies MNIST
◮ Winner-Take-All-like units solve the Constraint Satisfaction Problem Sudoku
◮ Sea-of-Noise driven Restricted Boltzmann Machine classifies, completes patterns and

dreams

◮ All rely on training the hardware in the loop; on-chip learning/calibration work in

progress

◮ Accelerated dynamics (10000× faster w.r.t. biology) pay off for inference and

generation

◮ You are welcome to request access at http://www.neuromorphic.eu

http://www.neuromorphic.eu

	Intro
	ITL
	Sudoku
	Sampling

