

Experiments on BrainScaleS

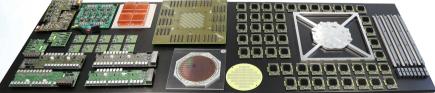
Electronic Vision(s) Kirchhoff-Institute for Physics Heidelberg University

2018-03-01

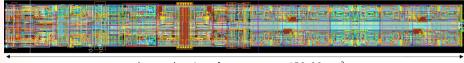
Machine Room with 20 BrainScaleS Wafer Modules

BrainScaleS Wafer Module

- ▶ 20 cm Wafer, 180 nm CMOS
- ► Main PCB
- 48 Kintex-7 FPGAs (TU Dresden)
- Power supplies
- Aux. Boards (e.g. for analog readout)
- In development for > 10 years



Analog Neuron Circuit



layout drawing of two neurons: 150x20 μm^2

- Adaptive Exponential Integrate and Fire (AdEx) Model
- Dedicated circuits in every neuron for:
 - resting potential
 - reset potential
 - threshold potential
 - reversal potentials
 - refractory period
 - membrane time constant
 - synaptic time constants
 - adaption
 - exponential term

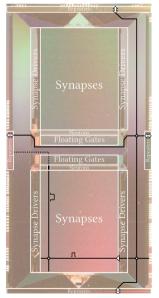
 Accelerated dynamics compared to biological real-time:

$$egin{aligned} & \tau = \textit{C} \cdot \textit{R}, rac{ au_{hw}}{ au_{bio}} = 10^{-4} \ & au_{hw} = 1\,\mu s \Rightarrow au_{bio} = 10\, ext{ms} \end{aligned}$$

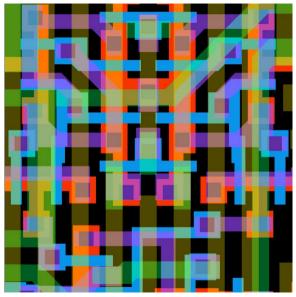
HICANN: High Input Count Analog Neural Network Chip

- 512 analog neurons, 110 000 plastic synapses
- ▶ <u>Digital</u> communication → mixed-signal system
- ► Sparse crossbar switches connecting busses → programmable network connections
- Analog parameter storage (floating gates)
- ► Postprocessing (IZM Berlin) → wafer scale networks





From Transistors to Wafer



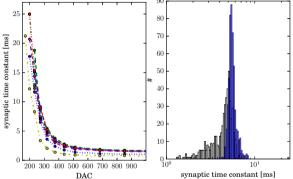
Configuration and Calibration

Configuration:

- Large configuration space per HICANN: > 10000 parameters
 Floating gate analog storage:

 Voltages (max. 1800 mV)
 Currents (max. 2500 nA)

 Both programmed via a DAC
- Both programmed via a DAC (0...1023)



Calibration:

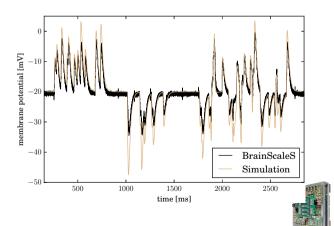
- Analog circuits are subject to process dependent device mismatch, i.e. variations from one transistor to the other
- For same value of supplied parameter, the neuron response varies
- For all neurons and parameters: set DAC values, measure and fit

pyNN: The Network Description Language

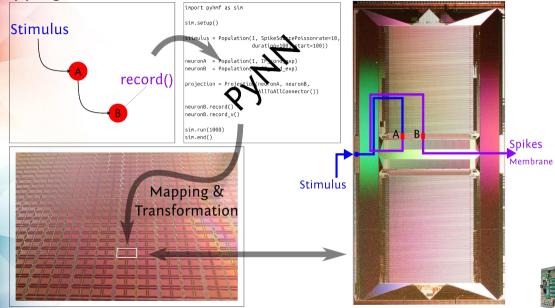
- PyNN is a simulator independent network description language
- Programs can be executed on different simulators and different hardware without (large) changes

```
import pyhmf as pynn
# import pyNN.nest as pynn
stimulus = pynn.Population(1,
pynn.SpikeSourceArray, {
   'spike_times': exc_spike_times})
pop = pynn.Population(1,
pynn.IF_cond_exp,
neuron_parameters)
```

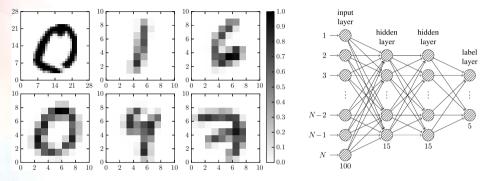
pynn.Projection(stimulus, pop, con, target='excitatory')



Mapping a Network to Hardware



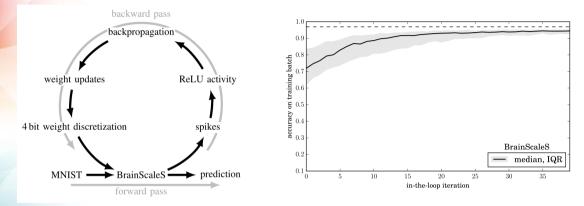
MNIST Handwritten Digit Recognition with a Deep Neural Network



- Fully-connected feed forward network
- ▶ 100 + 15 + 15 + 5 = 135 neurons, 3700 synapses

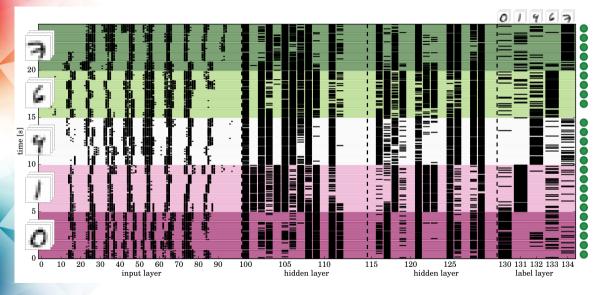
(Schmitt and Klaehn et al., 2017)

In-The-Loop Training

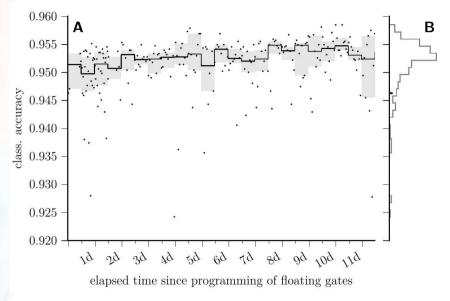


- Conversion to spiking neurons: accuracy reduced to 72^{+12}_{-10} %
- Continue training with the hardware in the loop: accuracy recovered to $95 \frac{+1}{-2}\%$

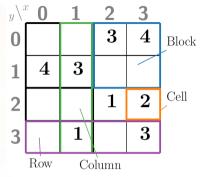
Raster Plot after In-The-Loop Training

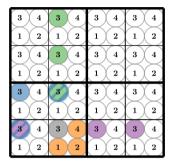


Floating Gate Time Stability



Solving the Constraint Satisfaction Problem Sudoku

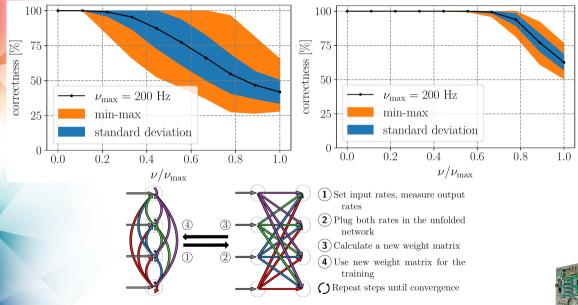




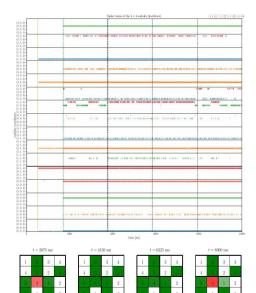
- Winner-take-all structure represent Sudoku rules (Jonke et al., 2016), (Guerra et al., 2017)
- ▶ Minimally represent each cell with 4 neurons \rightarrow 4 × 4 × 4 = 64 neurons, 1000 synapses

(A. Kugele, master thesis, 2018)

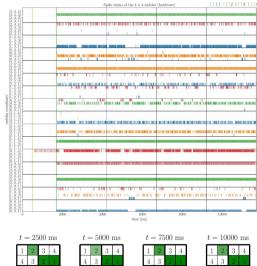
Training the WTA motifs (left: before, right: after training)



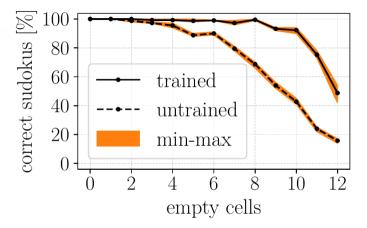
Before Training



After Training

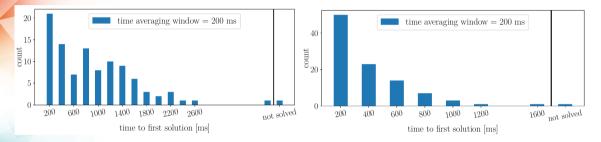


Performance on Solving Sudokus



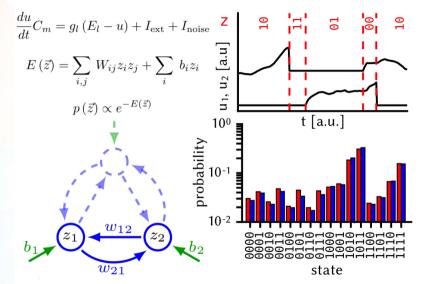
- Increased performance after training
- Sudokus with 8 (of 16) empty cells safely solved

Time to First Solution (left: untrained, right: trained)

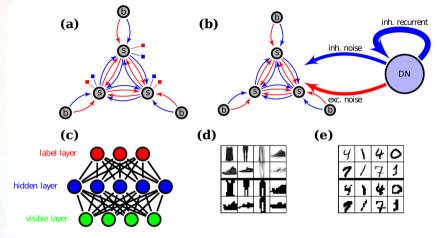


Time to first solution is greatly decreased after training

Neural Sampling (Buesing et al., 2011), (Petrovici et al., 2016)

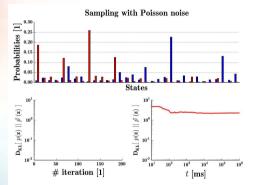


Sampling from Restricted Boltzmann Machines



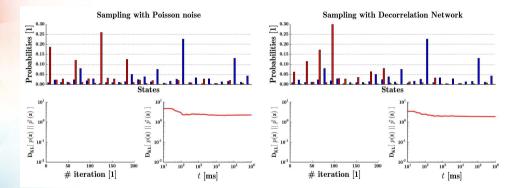
- Stochasticty supplied by a kind of Sea-of-Noise network (Jordon et al., 2017)
- Experimental results (Kungl et al., 2018 in preparation)

Training an Example Network



Train the hardware in the loop with the wake-sleep algorithm (Hinton et al., 1995)

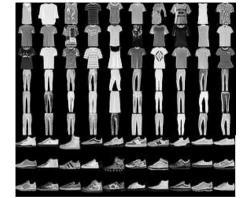
Training an Example Network



Train the hardware in the loop with the wake-sleep algorithm (Hinton et al., 1995)

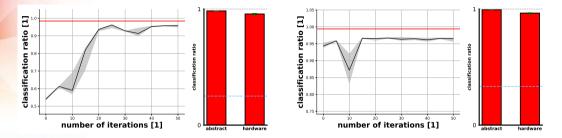
Datasets

З -4



- MNIST (LeCun et al., 1998)
- Fashion-MNIST (Xiao et al., 2017)

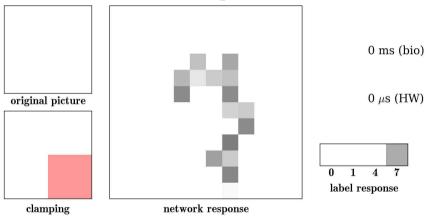
Classification (left: MNIST, right: Fashion-MNIST)



MNIST: 0 1 4 7

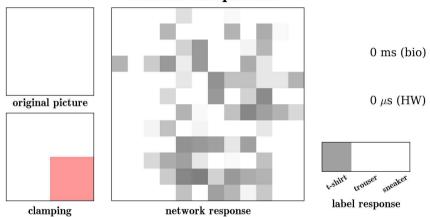
- Fashion-MNIST: T-shirt/top, Trouser, Sneaker
- 400 Sea-of-Noise, 200 sampling neurons (visible 12 × 12, hidden, label), 50000 synapses

Pattern Completion (MNIST)



Pattern completion

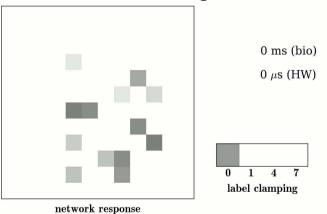
Pattern Completion (Fashion-MNIST)



Pattern completion

Lucid Dreaming (MNIST)

Lucid dreaming



 By clamping the label layer, the visible layer can be driven to dream of the given class

Summary

- Experiments on the BrainScaleS Wafer Scale System:
 - Spiking Deep Neural Network classifies MNIST
 - Winner-Take-All-like units solve the Constraint Satisfaction Problem Sudoku
 - Sea-of-Noise driven Restricted Boltzmann Machine classifies, completes patterns and dreams
- All rely on training the hardware in the loop; on-chip learning/calibration work in progress
- Accelerated dynamics (10000× faster w.r.t. biology) pay off for inference and generation
- You are welcome to request access at http://www.neuromorphic.eu

