Ion channels, active dendrites, and computation

Weinan Sun

HHMI
Janelia Research Campus
Spruston Lab

Neuronal diversity

Cerebellar Purkinje cell

Striatal medium spiny neuron

Dentate granule cell

Cerebellar granule cells

Olfactory mitral cell

Spinal motor neuron

Pyramidal neurons

Lipids and ions

Membrane proteins are fundamental for electrical properties

What's the input processing function?

McCulloch-Pitts Neuron

What's the input processing function?

McCulloch-Pitts Neuron

This simplified model does not capture some key features of real neurons.

Two key components shaping input processing in biological neurons

Ion channels and dendrites

Extracellular

Cell membrane

Extracellular

Extracellular

Ion channels as basic computational elements

Extracellular

Ion channels as basic computational elements

Extracellular

Three key players during input transformation

Voltage gated Na+ channel Voltage gated Ca²⁺ channel

NMDA receptor

Rest (-70 mV)

Structures from Nieng Yan Lab/Eric Gouaux Lab

Depolarized (-40 mV)

Structures from Nieng Yan Lab/Eric Gouaux Lab

Nonlinear voltage current relationship

Voltage gated Na+ channel

Nonlinear voltage current relationship

Voltage gated Na+ channel

Voltage gated Ca²⁺ channel

NMDA receptor

20

-0.2

Regular Na+spike: the action potential

Regular Na+spike: the action potential

Voltage gated Na+ channel

Regular Na+spike: the action potential

Dendritic Na+spike?

Dendritic Na+spike

CA1 pyramidal neuron

Dendritic Na+spike

CA1 pyramidal neuron

Dendritic Na+spike

Dendrite 259 µm -900 μA (s. **!**-m.) Soma -1300 μΑ Dendrites are active -2500 μA and nonlinear 20 mV 2 ms -2500 μA

CA1 pyramidal neuron

Gating of distal input by proximal input

Gating of distal input by proximal input

Gating of distal input by proximal input

Layer 5 pyramidal neuron

Layer 5 pyramidal neuron

Layer 5 pyramidal neuron

Layer 5 pyramidal neuron

Layer 5 pyramidal neuron

Larkum 1999

Single spike and bursting can convey multiplex code

Recruit different set of synapses

both ligand gated and voltage gated

liganded but silent due to Mg²⁺ block

Neurotransmitter binding + depolarization

Neurotransmitter binding + depolarization (itself a coincidence detector)

NMDA spike/plateau potential

NMDA spike/plateau potential

NMDA receptors detect clustered inputs within the same branch

Schiller, 2000

Ion channels are complex computational elements.

Ion channels are complex computational elements.

Multiple gating mechanism with complex dynamics.

Point neuron model does not fully capture neuronal function.

Point neuron

- Point neuron model does not fully capture neuronal function.
- Dendritic spikes increase the computational power of a single neuron.

 NMDA spike is unique due to the double-gated mechanism of NMDA receptors.

 NMDA spike is unique due to the double-gated mechanism of NMDA receptors.

but blocked state

 NMDA spike is unique due to the double-gated mechanism of NMDA receptors.

 NMDA spike is unique due to the double-gated mechanism of NMDA receptors.

 NMDA spike is unique due to the double-gated mechanism of NMDA receptors.

Glutamate release at different branches

 NMDA spike is unique due to the double-gated mechanism of NMDA receptors.

Enable active dendrites for 100s of milliseconds

 NMDA spike is unique due to the double-gated mechanism of NMDA receptors.

Enable active dendrites for 100s of milliseconds

 NMDA spike is unique due to the double-gated mechanism of NMDA receptors.

Agonist-bound but blocked state

Enable active dendrites for 100s of milliseconds

Online re-configuration of circuits, with minimal energy cost (ligand binding with no current flow).

Acknowledgments

Nelson Spruston

POSTDOCTORAL ASSOCIATE Xinyu Zhao

RESEARCH SCIENTIST Erik Bloss

RESEARCH SCIENTIST Mark Cembrowski

RESEARCH SCIENTIST Ching-Lung Hsu

RESEARCH SCIENTIST David Hunt

POSTDOCTORAL ASSOCIATE **Boaz Mohar**

TEAM LEAD, LAB ADMINISTRATION Christine Morkunas

Johan Winnubst

Thank you!

