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Neuronal diversity
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Input - output function of a neuron
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Input - output function of a neuron

receive input current h
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Input - output function of a neuron

Transform h through a function
t(h)




Input - output function of a neuron

Induce action potential




Input - output function of a neuron
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Raise Ca2+ in axonal terminal
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Input - output function of a neuron
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What’s the input processing function?

McCulloch-Pitts Neuron
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What’s the input processing function?

McCulloch-Pitts Neuron
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This simplified model does not capture some key features of real neurons.



Two key components shaping input processing
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lon channels and dendrites
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Membrane ion channels

Extracellular

Cell membrane I 4 nm

Intracellular



Membrane ion channels
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lon channels as basic computational elements

Extracellular

Intracellular



lon channels as basic computational elements
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Three key players during input transformation

Voltage gated Voltage gated NMDA
Na+ channel Ca2+ channel receptor
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Common feature: voltage dependence
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Common feature: voltage dependence
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Nonlinear voltage current relationship

Voltage gated Na+ channel




Nonlinear voltage current relationship
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Regular Na+ spike: the action potential

Voltage gated Na+ Channels



Regular Na+ spike: the action potential
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Regular Na+ spike: the action potential

7

s
/ 20 m_VI

‘ 20 ms

S
W

-~

2N
™\

Voltage gated Na+ Channels

Action potentials



{r, "
Uy

~’
—y

d
\

Dendritic Na+ spike?
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Dendritic Nat spike

n direct dendritic
\ recording

CA1 pyramidal neuron

Golding and Spruston, 1998



Dendritic Nat spike
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Dendritic Nat spike
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Gating of distal input by proximal input
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Gating of distal input by proximal input
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Gating of distal input by proximal input
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Dendritic Ca2+ spike
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Dendritic Ca2+ spike
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Dendritic Ca2+ spike
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Dendritic Ca2+ spike
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Dendritic Ca2+ spike
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Single spike and bursting can convey multiplex code

Recruit different set of synapses
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NMDA receptor



NMDA receptor

both ligand gated and voltage gated



NMDA receptor
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NMDA receptor
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NMDA receptor
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Neurotransmitter binding + depolarization
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NMDA spike/plateau potential

Schiller et al. (2000) Spike
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NMDA spike/plateau potential

Schiller et al. (2000) Spike
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Summary
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Emerging picture

Hausser & Mel 2003



Emerging picture

— dendrites as active
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Emerging picture
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Summary

* |on channels are complex computational elements.



Summary

* |on channels are complex computational elements.

Multiple gating mechanism with
complex dynamics.
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Summary

* Point neuron model does not fully capture neuronal
function.
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Summary

* Point neuron model does not fully capture neuronal

function.
* Dendritic spikes increase the computational power

of a single neuron .
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Summary

e NMDA spike is unique due to the double-gated
mechanism of NMDA receptors.

Agonist-bound
but blocked state
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Summary

e NMDA spike is unique due to the double-gated
mechanism of NMDA receptors.
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Summary

e NMDA spike is unique due to the double-gated
mechanism of NMDA receptors.

Glutamate release at different branches
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Summary

e NMDA spike is unique due to the double-gated
mechanism of NMDA receptors.

Enable active dendrites for
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Summary

e NMDA spike is unique due to the double-gated
mechanism of NMDA receptors.

Enable active dendrites for
100s of milliseconds

to t1 to
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Agonist-bound

but blocked state Online re-configuration of circuits,
with minimal energy cost (ligand binding

with no current flow).
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Thank you!



Q&A

Calcium spike

| 20 mV Sodium spike

Dendrite 10 ms
Soma T~ Dendrite

soma /T~

AP initiation

(axon) NMDA spike

Stuart and Spruston, 2015



