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Learning-to-learn (L2L) is inspired by biology,  

including evolution 

 

 

• L2L (also referred to as Metalearning) had already been discussed for 

several decades in neuroscience,  cognitive science, and machine learning.  

 

• But only recently, with sufficient computational power being available (+ very 

nice new ideas), it has become an important tool in machine learning (in 

particular for Deep Learning). 

  

• But so far it has apparently not been applied to networks of spiking neurons, 

or to neuromorphic devices. 

 



Instead of single learning tasks, we consider  a 

family F of learning tasks  (F is in general  

infinitely large). 

The first art is to define F in such a way, that L2L  

produces a desired result. 

Define for any learning task C from the family  

F the fitness f(C) of a NN N with hyperparameters  

(hp‘s) 𝚯  by evaluating how fast and/or how well it  

can learn C. These hp‘s Θ  remain fixed while the NN N learns the task C (in the „inner 
loop“). 

The second art is to define the fitness function. 

The third art is to choose the right NN and the right set of hp‘s. 

 

One optimizes  Θ  through some „outer loop“ optimization (e.g. ES)  or learning algorithm 
(e.g. BPTT) to produce high fitness f(C) for a (new) randomly drawn task from F.  

Typically this outer loop optimization involves large numbers of learning episodes for many 
different tasks from F, hence it tends to be computation-intense. 

 

An essential difference to the standard praxis of Machine Learning:  

Testing is not carried out for new examples from the same learning task, but for new  
examples from a new learning task from the same family F. 

 

 

 

 

 

Standard L2L framework 



Try to capture in the definition of F the set of learning  

tasks that a neuromorphic device N is likely to encounter  

during its lifetime. 

 

Choose hp’s 𝜣 so that they define all aspects of learning in the neuromorphic 

device N about which one is not sure, e.g. 

• architecture of N 

• time constants and other physical parameters  

• some or all of the synaptic weights of N 

• plasticity rules and their parameters 

• learning curriculum and learning rates. 

 

 

 

 

 

 Example setup for application of L2L to  

neuromorphic devices N 



First applications of L2L to SNNs 

The L2L approach can be applied to any type of learning tasks C for the 

network N  in the inner loop:  supervised, unsupervised, reinforcement learning 

(RL). 

 

I will present first demos for RL and supervised learning. 

 

We use benchmark challenges that were proposed  for  L2L applied to non-

spiking recurrent ANNs (LSTM networks): 

 

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., ... & 

Botvinick, M. (2016). Learning to reinforcement learn. arXiv preprint arXiv:1611.05763. 

 

Hochreiter, S., Younger, A. S., & Conwell, P. R. Learning to learn using gradient descent. 

ICANN 2001.   



 Demos for letting SNNs learn to 

learn from rewards 
 

• The fitness f(C) reflects here the the sum of  rewards that N receives 

 

• N gets in addition, like in (Wang et al, 2016), at each step t the current  

state, as well as the action and reward for the preceding  time step.  

 

• Hence it can compare the expected and actual reward for the  

preceding time step, e..g, in order to update its value function. 

 

• The weights W of the NN in the inner loop are hp‘s, that are optimized by the outer loop. 

Information gathered while  learning the current task C has to be stored in the dynamic  

state of N.  

 

• One can achieve that by employing  new „spiking LSTM modules“ in the SNN, or by  

using digital registers on a neuromorphic chip. 

 

• The resulting weight vector W of the SNN encodes the RL-algorithm that it learnt to use for 

tasks from the family F,  

Botvinick et al present in forthcoming work experimental data from neuroscience which suggests that 

brains use a similar method for fast learning (without changing synaptic weights). 

 



We implemented learning-to-learn from rewards  on  

the very fast and energy-efficient spiking HICANN-DLS chip ,  

using mixed analog-digital technology from the Lab of Karlheinz  

Meier in Heidelberg. 

 

This chip is a small prototype (32 neurons)  for larger chips  

that will form the basis of larger systems with wafer-scale  

integration. 

 

 

The outer loop of L2L was implemented with the digital plasticity  

processsor on the chip.  

 

It optimized hp‘s 𝜣 that controlled physical parameters as well as  

details of the learning process. 

 

The hardware SNN applied TD-lambda to learn the Q-function. 

 

Digital registers of the plasticity processor were used as working  

Memory. 

 
 

 

 

 

 

 

Application to a neuromorphic chip 



Continued: L2L application to the HICANN-DLS 

Action choices were encoded on the level of single  

spikes (not rates!) 

Both parameters of the learning rule (TD-learning) 

and of the hardware were  hp‘s that were optimized  

in the outer loop. 

 

We tried this out for two families F of RL-tasks: 

--navigation to a goal G in random mazes of a given size 

--random MDPs of a given size.  

For both families the HICANN-DLS acquired transfer learning capability: 

Shown are the policies learnt after 1000  steps for navigating to a goal G in a new 

random maze,        before                            and                      after  L2L   



Choosing a good optimization algorithm for the  

outer loop is essential 

We examine here the emergence of transfer learning capability for the family F of 
random MDPs with 6 states and 8 actions  

 

Fitness was the sum of  rewards  

collected during a learning episode  

of fixed length (2000 steps), in  

dependence  of the number of  

previously learnt MDPs. 

 

 

ES= Evolution Strategies 

(Salismans et al., 2017) 

 

CE = Cross Entropy Method 

 

SA = Simulated Annealing 

 

Result: L2L with ES in the outer loop, but not with SA, endows  the HICANN-DLS 
with substantial transfer learning capability. 



We can expect a qualitative jump in the computational 

capability of SNNs through L2L 

Wang et al proposed  a really mean family F of learning tasks for  

LSTM networks:  

The reward of the first arm of a 11-armed bandit encodes the  

„address“ of that one of the other 10 arms that has the highest  

reward probability. 

 

It turns out that SNNs (with „spiking LSTM modules“) can learn to cope with 
that. 

The SNN had to decide in 20ms which arm to pulll next. 

 

The recurrent SNN was optimized via BPTT to learn a  

policy and a value function according to the Advantage- 

Actor-Critic algorithm (Mnih et al, 2016). 

 

After 500 000 learning episodes the recurrent SNN  

discovered a policy that used a simple sequential program  

to explore multi-armed bandits from this family F.  

 

 

 

 

 



SNNs can also learn-to-learn from a teacher 
 

• Here the SNN  N   learned to give output values that approximated target values that were 

given by a teacher („supervised learning“).  

 

• Benchmark family F from (Hochreiter et al., 2001): Quadratic functions G of the form 

 

       with analog parameters a, b, c, d, e, f  from [-1, 1],   and arbitrary analog input values 𝑥1, 𝑥2 

       from [-10, 10], outputs scaled to [0.2, 0.8]. 

 

• Together with a new sample < 𝑥1, 𝑥2 > the network gets as additional input the target value 

𝐺 𝑥1′, 𝑥2′  for the preceding input sample  <𝑥1′, 𝑥2′ >  . 

 

• This was the learning setup proposed in (Hochreiter et al, 2001), where each teacher value 

is given to the network in a delayed manner, so that it cannot cheat. 

 

• If it wants, the SNN can store the preceding input  <𝑥1′, 𝑥2′ > and  compute the error that it 

made for it.  But it does not have to do that. 

  

• Here the SNN is not allowed to change its weights W  for learning a particular function 

G, since W  is included in the hp‘s, and hence is determined by the outer loop. Thus the 

weights W of the SNN also  encode  its learning algorithm. 

• But one can just as well tune none or just some of the weights in the outer loop. 

𝐺 𝑥1, 𝑥2 = 𝑎 𝑥1
2 + b 𝑥2

2 + c 𝑥1 𝑥2 + 𝑑 𝑥1 + 𝑒 𝑥2 + 𝑓 



Implementation details 

• For each target function G  one draws randomly  

      input samples  < 𝑥1, 𝑥2 > , transforms  them via  

      population coding into spike trains, and injects  

      these spikes for 10ms into the recurrent SNN N   

      (which consisted here of 200 neurons). 

 

• The SNN gives output values through a linear readout from the spiking 
neurons. 

 

• One modifies the weights W of the SNN and of the linear readout via 
BPTT (i.e., Deep Learning applied to SNNs). 

 

• Since the quadratic target functions G change during training, the weights W 
do not specialize for computing a particular function G. 

 

 

• Key difference to earlier uses of SNNs in liquid computing: There the weights 
of the SNN were randomly chosen, not optimized for a range of learning tasks. 



During the initial stages of training in the outer  

loop the SNN in the inner loop gets its basics  

right, such as giving output values in the same  

range [0.2, 0.8] as the target functions. 

 

Sample performance for random  

inputs < 𝑥1, 𝑥2 > , at 3 stages of  

training in the outer loop: 

 

 

 

 

 

After training the SNN in the outer loop, the weights W of the SNN and the 

weights of the linear readout are frozen. Nevertheless the SNN is enabled to 

learn from a teacher any concrete quadratic function G. 

After many iterations, the SNN  

learned to learn from a teacher 



Summary I 

• I have presented proof of concept  that the addition of  „spiking LSTM 

modules“ allows us to port computational and learning capabilities of 

recurrrent ANNs into recurrent SNNs. 

 

• Learning to learn from rewards can also be applied to neuromorphic devices 

such as the HICANN-DLS, where digital registers can hold working memory.  

 

• In this way neuromorphic devices are enabled to carry out transfer learning. 

 

• For SNNs in software simulations one can use Deep Learning for producing 

computationally powerful recurrent SNN architectures, and for the design of 

learning algorithms for SNNs. 

 

 



Summary II 

• We are currently developing methods for understanding how the resulting 
SNNs and learning algorithms do their job. 

•   

• The resulting SNNs I have seen so far appear to compute with spike 
patterns, rather than rates. 

 

• This reverse engineering of optimized SNNs will produce a better 
understanding of the computational role of specific SNN architectures and 
components, and create new links to neuroscience. 

 

• I expect that L2L will revolutionize the design of recurrent SNNs for concrete 
computations, as well as the design of learning algorithms for recurrent 
SNNs. 

 

• In particular, we will be able to produce SNNs that are able to follow rules, 
make use of episodic memory for decision making, and carry out symbolic 
computations and reasoning.. 
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