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Brain-morphism:
Astrocytes as Memory Units

Constantine Michmizos

Computational Brain Lab — Rutgers University
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ComBra Lab’s goal mimic

® To understand biological intelligence and

translate our knowledge to artificial intelligence O il
o by developing
brain-morphic Wnderstand

Computa- Neural
tional Astrocytic

Brain = Networks

computational methods

e thatintegrate® with the brain

from the macro (behavioral)

N0 (synaptic) scale
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n April 2016, the science academies of

the G7 nations as well as seven addi-
tional academies issued a statement calling
on world leaders to cultivate global brain
resources and address the growing threat of
brain disorders!. The statement proposed
four objectives: (i) fundamental research
with international collaboration; (ii) global
programs for the diagnosis, prevention and
treatment of brain disorders; (iii) theoretical

Grillner et al. Nature Neuroscience 2016

modeling of the brain and the development
of brain-based artificial inteﬂm
integration of neuroscience with the social
and behavioral sciences to improve educa-
tion and life management as components of
a brain-aware society.

Paramount to addressing all of these objec-
tives is government and/or private foundation
commitment to supporting basic and clinical
research in the brain sciences. Many nations

\\

Understanding the
function of the brain

for

Using computational principles of
the brain for generic data analysis

e



Alan Turing, 1948

‘e A'.'fascinating prelude to today’s Al

« Proposed connectionist models
that would today be called neural
networks

N | ety
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odel's famous theorew, or some eimilar argument, one can

show that however the machine is constructed there are bound
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and useful links and cutting useless
ones -’

to be cases where the machine falls to give an answer, but

a mathematician would be able to. On the other hand, the

1948 1956 achine has certain advantages over the mathematician.

s i _+ The proposed.learning rule was
inspired by the infant’s brain

'breakdown', whereas the mathe atician makes a certain

t t s danger 0 the
proportion of mistakes. I believe that thi g
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FiaiTatae Sl i, APREETNr,

input neurons

first hidden layer
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Gradient-Based Learning Applied to Document

3. Py (1950) 148, 574-990

RECEPTIVE FIELDS OF SINGLE NEURONES IN
THE CAT'S STRIATE CORTEX
By D M. MUBKL® axe T. N. WIKSKL®
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A capsule is a subset of neurons within a layer that outputs:
1. aninstantiation parameter: is an entity present within a

limited domain?
” S T 2. avector of pose parameters: the pose of the entity
== relative to a canonical version

A capsule replaces max pooling
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Using computational principles of

the brain for generic data analysis
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Neural Networks for
Pattern Recognition

Christopher M. Bishop
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1932. Edgar Adrian, Nobel Prize 1971. David Cohen, MIT ~ 2013. Motor neurons control a robotic
Single-Neuron Recordings Magnetoencephalography arm for paraplegic patients (BrainGate)

Information =
f (electrical activity)

1997. Deep Brain Stimulation for 2013. TMS applied to the motor
alleviating Parkinson’s disease cortex induces hand movement



Non-neuronal brain cells
are electrically silent

The other brain
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Non-neuronal brain cells
are electrically silent

2000’s. Calcium Imaging allows studies of calcium signaling in
’! hundreds of neurons and glial cells, within neuronal circuits .
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Santiago Ramodn y Cajal’s drawing of an astrocyte

Ramodn y Cajal S. Something about the physiological significance of neuroglia. Revista Trimestral Micrografia 1, 3—47, 1897
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Astrocytes

A paradigm shift in Neuroscience

50 um'
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Astrocytes Ast rocy{’es \
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A paradigm shift in Neuroscience

2 Understanding astrocytes
\@%Omby calcium imaging
* Embed astrocytic
mechanisms into NANs
e Suggest functions for
astrocytes at the
network level and large

time scales
e where behavior and

diseases emerge

for

Understanding the
function of the brain

for

Using computational principles of
the brain for generic data analysis

BN . |
2 Neuro-morphic Computing
* Introducing astrocyte,

a new computational unit

into Neural Networksethe
x\\ewﬂk’/}‘g{k d

prW OV RS

\ ok
2 Learnin%\sﬁveight updating

* The third part of the synapse
introduces an orthogonal
dimension to “neural” plasticity

ol
Timg%%liscrete instances
e Astrocytes respond dynamically
and in larger time scales than
neurons, mapping neural activity
into the slower behavioral scales
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The Neural Modeling Paradigm —

Y et %22 Physical Phenomenon
e e .
. mmmgs mn e (eg ) neural flrlng) M
i ot \ et
j? g :‘:::T'iﬂa Terminal fO r v (t ) l
_
I(t) 1,
treat as emergent phenomenon | Fonetion of the brain | treat as target function
* Byophysics-based models  Phenomenological models
* Understand the principles of I | | e Occam’s razor/KISS principle
the underlying phenomena * Level of detail is

» Data drives details hypothesis/interest driven

for

Typically higher model complexity Typically lower model complexity

Using computational principles of
the brain for generic data analysis

How to Build a

BRAI'\.

Adapted by /gi‘:ﬁ)
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Karlheinz Meier L R

Chris Eliasmith
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Input
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-
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A\ 4

Firing Rate (spikes/s)

.............

Output

Time Input 2

Neurons encode information in spike rate

Mapping function between input-output

Leaky Integrate-and-Fire (LIF) Neuron

dv

TE = Vyeser — V(t) + RI(t)

then v(t + 1) « Vypger

Neural Network Astrocytic Network | Tripartite Synapse

et
=¥ Neural Network

To capture the dynamics of the interaction between the
neuronal and the astrocytic component of the networks

Step 1. Input as Spike timing

Vi(t) = E 6(t —t;)
l
Step 2. Synaptic current response

(5,
L(t,t) ={wi'e * —e #wlift>1

1©=) 5©
J
Step 4. Output spike

Vo () = LIF{I(t)}




Neural Network Astrocytic Network | Tripartite Synapse

a; = ag *n*oe\xp<_ri>
, o\ Ta
vvqbkbt\*

Inter-cellular CaZ* wave propagation in space and time  ¢;(r;,t) = a; - g;(r;, t)
lg\/\ﬂ?e
ri—,u-v-t rl-—,u-v-t
gi(r,t) =exp| — —exp| -

Tdecay Trise

]
} the distance of astrocyte i from the origination site (ry = 0)

700 intracellular Ca?* level in astrocyte i at time t
nM o

*  Tgecay Trise CONtrol the fall and rise time of the Ca?* wave
* T4 controls the magnitude of the amplitude fall-off between astrocytes

0 B me e [ captures the permeability of the cells through which the wave propagates

[ ]| S with speed v - lumping together all the sub-mechanisms of gap-junctional and
200 h ‘ | extracellular communication
- * nisthe normalization constant for biexponential function, which is a function
0 10 20 30 um P

of the rise and decay parameter



Tripartite Synapse
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M. Tsodyks, A. Uziel, and H. Markram
Synchrony generation in recurrent networks with
frequency-dependent synapses J. Neurosci. 2000

Tin IS the characteristic time of

postsynaptic currents (PSCs) decay

Trec 1S the recovery time from

synaptic depression

— cx - 8(t — tgy)

E=T7‘eC

dy y

— = - cx-6(t—t
dt Tm+ X ( Sp)

synaptic synaptic

ﬁ

current strength

Isyn =A-y(t)

x+vy+z=1 are the fractions of synaptic

resources in a recovered, active, inactive state

11 is the fraction of x released when a spike

arrives at the synapse at time tg,,



T”pamte Synape Neural Network Astrocytic Network | Tripartite Synapse
Z

dx —(1—=f)u-x-6(t—tgp)

dt_rrec

dy y
E——a+(1—f)°U°X°5(t—tsp)
dz y Z

dt Tin Trec

df _(_J
=\ + (1 —f)-k-0(c;(1;,t) — Cenresn)

[ is the gating variable

Tcq 1S the decay constant of f

k controls the rise time of f It models Ca?*-dependent presynaptic inhibition

T;, is the characteristic time of x+y+z=1 are the fractions of synaptic

Trec IS the recovery time from ¢, .. is [intracellular Ca?*] needed ™ 'S the fraction of x released when a spike

synaptic depression to activate f arrives at the synapse at time tg,,



T”pamte Synase Neural Network Astrocytic Network | Tripartite Synapse

Astrocytes inject into the post-synaptic

neuron a slow-injected current (SICs)
SICs

are well fit to bi-exponential distributions

* have a rapid rise time (on the order of tens of ms)

* have a comparatively larger decay time (on the order of hundreds of ms)

Upon reaching a Ca?* peak, an

astrocyte releases glio- » are correlated with Ca?* wave peaks in both time and amplitude
transmitters that lead to

NMDAR-mediated SICs, with .
the SIC amplitude being Iastro =2.11- sz ln(w) @(l’l’l(W))
logarithmically proportional to
the Ca?* wave amplitude. W = (; (Ti, t)/nM — 196.69
L L
ISIC(t) — Iastro(ci(ri: t) — Cpeak) exXp |\ — —sic —exXpP\ — —sic
Tdecay Lrise



—(1= 1) u-x-6(t—tgp)

Tripartite Synapse q Neural Network Astrocytic Network | Tripartite Synapse
. e ', x

dt  Tyec

dy y
E——a+(1—f)°u'X°5(t—tSp)
dz vy Z

L df (] ;
0 W Mt
Listro = 2.11 - sz - In(w) - 0(In(w))

w=c;(r;,t)/nM — 196.69
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Extensive astrocyte
synchronization advances neuronal
coupling in slow wave activity in
vivo

Zsolt Szab6 (%, Laszl6 Héja?, Gergely Szalay?, Orsolya Kékesi?, Andras Fiiredi*¢, Kornélia
Szebényi*¢, Arpad Dobalyi®, Tamas I. Orban®, Orsolya Kolacsek?, Tamas Tompa?, Zsombor
Miskolczy®, Laszlé Biczok 5%, Balazs Rozsa?, Balazs Sarkadi® & Julianna Kardos®?

Slow wave activity (SWA) is a characteristic brain oscillation in sleep and quiet wakefulness. Although
the cell types contributing to SWA genesis are not yet identified, the principal role of neurons in the
emergence of this essential cognitive mechanism has not been questioned. To address the possibility
of astrocytic involvement in SWA, we used a transgenic rat line expressing a calcium sensitive
fluorescent protein in both astrocytes and interneurons and simultaneously imaged astrocyticand
neuronal activity in vive. Here we demonstrate, for the first time, that the astrocyte network display
synchronized recurrent activity in vivo coupled to UP states measured by field recording and neuronal
calcium imaging. Furthermore, we present evidence that extensive synchronization of the astrocytic
network precedes the spatial build-up of neuronal synchronization. The earlier extensive recruitment
of astrocytes in the synchronized activity is reinforced by the observation that neurons surrounded by
active astrocytes are more likely to join SWA, suggesting causality. Further supporting this notion, we
demonstrate that blockade of astrocytic gap junctional communication or inhibition of astrocytic Ca**
transients reduces the ratio of both astrocytes and neurons involved in SWA. These in vivo findings
conclusively suggest a causal role of the astrocytic syncytium in SWA generation.

Increasing body of evidence substantiating the impact of astrocytes on neuronal activity prompted a paradigm
shift from the neurocentric philosophy of nervous system function. Accordingly, astrocytes are increasingly rec-
ognized as major players in the modulation of neuronal function under both physiological'=* and pathophysiolog-
ical conditions*’. Beyond the local astroglial control over synaptic activity™'2, however, little is known about the
role of astrocytic networks in modulating large-scale neuronal ensembles. Exploration of the role of large-scale
astrocytic networks in information processing and cognition still lags behind its neuronal counterpart'* . We
conceived that fundamental properties of networking astrocytes may underlie physiological network-network
interaction between astrocytes and neurons. Astrocytes are capable of 1) detecting neuronal activity, 2) respond-
ing to this activity by raising local Ca** transients, 3) propagating the local changes over extended spatial scales
by Ca** waves traveling through the directly and densely interconnected astrocytic syncytium and 4) modulating
neuronal activity at multiple locations by releasing gliotransmitters and other neuromodulatory substances or
regulating ionic homeostasis'. Thus, astrocytes are ideally positioned to induce or contribute to synchroniza-
tion of large-scale neuronal networks. Along this line, we have previously demonstrated that the astrocytic and

!Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar
tuddsok kénitja 2, 1117, Budapest, Hungary. *Institute of Experimental Medicine, Hungarian Academy of Sciences,
Szigony 43, 1083, Budapest, Hungary. *Institute of Enzymology, Research Centre for Matural Sciences, Hungarian
Academy of Sciences, Magyar tuddsok kbnitja 2, 1117, Budapest, Hungary. *“MTA-ELTE Laboratory of Molecular
and Systems Neurobiology, Department of Physiology and Neurobiology, EGtvos Lorand University, Pazmany Péter
sétany 1C, 1117, Budapest, Hungary. SInstitute of Materials and Environmental Chemistry, Research Centre for
Natural Sciences, Hungarian Academy of Sciences, Magyar tudésok kiritja 2, 1117, Budapest, Hungary. ‘Institute
of Cancer Research, Medical University Wien, Borschkegasse 8a, 1090, Wien, Austria. Zsolt 5zabd and Laszld Héja
contributed equally to this work. Correspondence and requests for materials should be addressed to L.H. (email:

- bheja.laszlo@ttk.mta.hu)

FICREPORTS|7: 6018 | DOI10.1038/541598-017-06073-7

"This hypothesis was reinforced by a recent
modelling study showing that intercellular Ca2+

signaling potentially can introduce slow oscillation

in neurons [our Ref]. |Qur experimental data

strongly supports this hypothesis by

demonstrating that increasing astrocytic influence
on neurons indeed drives them to join the
oscillatory activity (Fig. 5C). In this context it is also
important to note, that the ratio of astrocytes
involved in the SWA was found to start decreasing
right after virtually all neurons joined the
simultaneous activity (Figs 4 and 5). This
observation further supports the view that
astrocytic activity corresponds to the generation
or maintenance, rather than termination of SWA."




brain oscillations are still lacking a mechanistic origin

* Rhythmic or repetitive electrical activity generated
spOHBAREBNISIO DI FES96n e d & imuli by the neurons

* Studied for 100 years (EEG, MEG, fMRIFPET, MER)

2500

2000
0 1500° Encode and process brain informationgtlow
§ e Communication through coherence: inferregional communication
= 1000 is established when the oscillatory agfivity between neuronal
500 pools is coherent (Fries 2005; 20
» Relatedsiomalkaspectsofhdan behavior
1889, : 1909 |veL95269nso 949nOI 1969 or% 2009

Year
* All brain diseases are associated with oscillatory imbalances
Source: PubMed



Introducing function into a Neural-Astrocytic Network

NAN Hopfield Nets

The idea of memories as energy minima was proposed by
|.LA. Richards in 1924 in “Principles of Literary Criticism”

Hopfield (1982) proposed that memories could be energy

minima of a neural net With 19,000 citations,
Hopfield nets
Using energy minima to represent memories gives a are the precursors of
Boltzman Machines (BM),
content-addressable memory Restricted BM and Deep Belief
, m{\)(@ Networks

Memories are stored in\%\é?synapses



* A Hopfield net is composed of binary threshold units with recurrent connections between them
* Recurrent nets of non-linear units are generally hard to analyze. They can:

Settle to a stable state | Oscillate | Follow chaotic trajectories that cannot be predicted far into the features

{ . eeeee
00000000000 vee N -
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Fully connected (not shown)

* Hopfield (and others) realized that if the connections are symmetric, there is a global energy function
 Each binary configuration of the whole network has an energy

 The binary threshold decision rule causes the network to settle to a minimum of this energy function



Tripartite Synapse

Goal: To generate a sequence of patterns

* by going through a predetermined (by the astrocytes) sequence, in a closed limit cycle

« Sequences of patterns occur widely in biological sequences (e.g., walking, learning a task, rehab)




Network Neuron

N neurons with values x; = +1,i = 1, ..., Wligns with the local field, h;:
Fully connected neurons, i.e., every neuronSi(t +1) = S"g(hi(t))

is connected to every other neuron
hi(t) — hi(t)neural 4+ hi(t)astro

N .
1 U U : . -
Jij = NZT(ZEI — 1) (ZE]- — 1),l * J h; (t)neural — § Ji15;(®)
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Astrocytic Dynamics Astrocytic Learning

Single Astrocyte Process Ca%* & SICs

e e -

Pii1 = aby + Bsy

wn
______ . 2
0N where 0 < o < 1 =
> time B3
S O = o
5 8 t—d.al L .
<9 SC = e 7sc O
o =
(D
=
e —
0 100 200 300 400 500 600 700 800

Time (ms)
The dynamics of the two signals of interest in an astrocytic process: Local Ca?* wave which rises

in response to the presynaptic activity and the related SIC injected into the postsynaptic neuron.
5

. the time at which the astrocyte Ca?* reached ¢,



Astrocytic Dynamics Astrocytic Learning

Derive time spent in each memory t
Pii1 = aby + Bsy

where 0 < a <1

P, =P,_,
¢ LZPt — Pt—2 Taylor series ofrlx

We can solve for P;:

P, = _ = E al) s, = E at's, .r
U1 —al '8, ( ) t 'B’ t—t
t'=0 t'=0

. . . .. C T —
For Py = Cipres IN the continuous limit: th;eSh = fo a®tdt’

ln(cthlg,eSh In(a) + 1)

In(a)

with the general solution 7 =




Astrocytic Dynamics Astrocytic Learning

Derive time spent in each memory t

Pii1 = aby + Bsy
f=In -

Biological consideration. The more the astrocyte depends - In(1—ctpresn)
on its own Ca?* level in the previous time-step (a), the In(a)

where 0 < a <1

less it depends on the presynaptic neural activity (f).

\\ ln(cthlges" In(a) + 1)
¢ In(a)




Astrocytic Dynamics Astrocytic Learning

Derive time spent in each memory t
Pii1 = ab; + Bst

Tq VS. @ and Cenresh

where 0 < a <1

300

200 Tq(ms)
100
1.00 0

. S In(1—cthresh)
In(a)

(o4

For a fixed «, increasing c,,,.., increases
the time it takes for an astrocyte process

# 0.90 T 0.90

to release an SC, thus increases T,




Astrocytic Dynamics Astrocytic Learning
lntud&irqumth Stored Memories

During Sequence Recall

—-ﬁ%m surface that has
|' m|lh|ma at each E emory & bUt which also

t/'/tls steadily while the system i$ in a particular

1000

0 ' 200 400 600 ﬁ)
| state so that a downhill move from &;'to
' Average SICs

~ 1.0
3 V+1occurs eventually

3

= ut this picture is q little deceptive, bhgcause the dynamics
£

< 0.0 5 200 Lumdbjf e Itfp6lot(’).bc,’lltt’u' ’éib’df”ly s ul_(-jb " nt on an energy

Time (ms}
landscape, unless the connections are symmetric

The overlap of the neural network state with the stored memories. N = 500, p=7, g=6



Astrocytic Learning of Hebbian-type

Learning rate | | Time btw. switching memories

1
ATij = 7731'(tswitch)Pj(tswitch) = nsi(tswitCh)Sf (0) = nfiﬂ-l_ ffu

. /

Postsynaptic state Astrocytic state = Presynaptic State

for tswitcn > 0
* Att=t,,.. the astrocyte correlates its current state with the state of the post-synaptic neuron

and adjusts the levels of future gliotransmitter release accordingly—changing future SIC release
This mechanism requires retrograde signaling between the post-synaptic neuron and astrocyte

process, known to occur through endocannabinoid mediated pathways (Fellin et al. Neuron 2004)



What did we discover?




Kevin T. Feigelis, Physics Major, 2016 Leo Kozachkov, Physics/Math Major, 2016
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How astrocytes may encode
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[Ca] (microM)

Modeling of 2D Astrocytes

'§ IP_3 Induced Astrocytic Calcium Concetrations s sxn;:sﬁic:larl'z: ?gcisurﬁid Astrocytic IP_3 Con.centrations
2 i
(um) 10 20 30 40 50 60 + FL + + JH + + FL + T 7
Diffusive Evolution of Local Calcium + JH + + JH F{H - E b
AWave across an Astrocytic Branch i ok i

in Ay o iy wwomE g

+ ._;_. + ’ + ’ ._I_. + x-dim (microMeters) x-dim (microMeters)

L o " L 1 w h L) hl

'y N Ny "y om
o OOy oL, N ———— T —
N SN 7NN % . 0.0 0.2 0.4 0.6 0.8 1.0 12 1.4 0.0 01 0.2 03 04 05 06 07 08
v L I LI T " '. v v e '- PN Calcium Concentration (microMoles) IP_3 Concentration (microMoles)

am Passive




[IP3] (uM)

Towards
Mesochronous™ Communication

Lum)

— |P3 Sensitive ER

Passive
Branchlets

* Thanks to Simon Knowles



Astrocytes generate o @3 - Astrocytes generate
brain oscillations sequence learning
e

. o
P %}o
5 O |
. 0@~ o0&
ERS A
e od
00 -200 -100 N Pos“&ﬂ . 100 200

Time = 0.0s

]
¥ | (. Artificial
i | lologica Intelligence

Intelligence |
and NANs /2y and NANs

8‘0 0.5
1 sec
——

Local sleep in awake rats
Nature 2011

" [ NAN

% , At | \(0\/\/\/\/
T%Leu—«r—mimetic Robotics Applications 1€J§Lea-rofmorphic Computing

Gridbot Following Borders New Border Sensitive
Place Cells

aaaaaaaaaaa

nnnnnn

-

% Allo-Sensory Border Cells (36 neurons)
‘—, ' VAN 1
Is (36 neuron:

South|([[[| | |00 0O

(((((

Hippocampus

Step Decision Cells (8 neurons)

t
Turn tert ][] ) 1L
Turn Right 'I‘I (AR !
straight) |[[|[|/| | LLE

Motor Cells (3 neurons)




D)
O
VI
V4
C
qu
-
4




rrrrrrrrrrrrrrrrrrrrr

Brain-morphism:
Astrocytes as Memory Units
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