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ComBra Lab‘s goal

ᴥ To understand biological intelligence and                 

translate our knowledge to artificial intelligence

o by developing                                 

brain-morphic

computational methods

• that integrate† with the brain

from the macro (behavioral)

to the micro (synaptic) scale
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Computing for

Brain Science
Understanding the                 

function of the brain

Brain Science 

for Computing
Using computational principles of 
the brain for generic data analysis

Grillner et al. Nature Neuroscience 2016



Alan Turing, 1948

• A fascinating prelude to today’s AI

• Proposed connectionist models 
that would today be called neural 
networks

• Randomly connected networks of 
artificial neurons

• Training via reinforcing successful 
and useful links and cutting useless 
ones

• The proposed learning rule was 
inspired by the infant’s brain
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The Neuron as a 
Basic Information Processing Unit
McCulloch and Pitts (1943)

1948
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pigeons playing ping-pong - Skinner 1950



input neurons
first hidden layer

since they both contain similar elements

20131959
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Capsule NNs decreased the error by a whopping 45%

A capsule is a subset of neurons within a layer that outputs: 

1. an instantiation parameter: is an entity present within a 

limited domain?

2. a vector of pose parameters: the pose of the entity 

relative to a canonical version

A capsule replaces max pooling

50 70 90 10

Dec 20171956



Computing for

Brain Science
Understanding the                 

function of the brain

Brain Science 

for Computing
Using computational principles of 
the brain for generic data analysis

50 70 90 10

Sejnowski et al.
Putting big data to good use in neuroscience
Nature Neuroscience 2014







neurons
1932. Edgar Adrian, Nobel Prize

Single-Neuron Recordings
1971. David Cohen, MIT

Magnetoencephalography

2013. TMS applied to the motor 
cortex induces hand movement

2013. Motor neurons control a robotic 
arm for paraplegic patients (BrainGate)

Information =

f (electrical activity)

1997. Deep Brain Stimulation for 
alleviating Parkinson’s disease



10% 90%

The other brain
(glia cells)

Non-neuronal brain cells
are electrically silent

neurons



2000’s. Calcium Imaging allows studies of calcium signaling in 
hundreds of neurons and glial cells, within neuronal circuits .    

Non-neuronal brain cells
are electrically silent



Ramón y Cajal S. Something about the physiological significance of neuroglia. Revista Trimestral Micrografía 1, 3–47, 1897

Santiago Ramón y Cajal’s drawing of an astrocyte
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Astrocytes

A paradigm shift in Neuroscience



ᴥ Neuro-morphic Computing
• Introducing astrocyte,                   

a new computational unit                   
into Neural Networks

A paradigm shift in Neuroscience

ᴥ Understanding astrocytes 
by calcium imaging
• Embed astrocytic 

mechanisms into NANs
• Suggest functions for 

astrocytes at the 
network level and large 
time scales 
• where behavior and 

diseases emerge

ᴥ Learning by weight updating
• The third part of the synapse 

introduces an orthogonal 
dimension to “neural” plasticity

ᴥ Time in discrete instances
• Astrocytes respond dynamically 

and in larger time scales than 
neurons, mapping neural activity 
into the slower behavioral scales

Computational Astrocytes Astrocytes



Postsynaptic Neuron

Presynaptic NeuronAstrocyteMicroglia Astrocyte Blood 
Vessel

Colangelo et al. Neuroscience Letters 2014



The Neural Modeling Paradigm 
Physical Phenomenon

(e.g., neural firing)

treat as emergent phenomenon treat as target function

I(t)

v(t)

• Byophysics-based models

• Understand the principles of 

the underlying phenomena

• Data drives details

Typically higher model complexity Typically lower model complexity

• Phenomenological models

• Occam’s razor/KISS principle

• Level of detail is 

hypothesis/interest driven

Adapted by
Karlheinz Meier



Neural Network

Step 1. Input as Spike timing

𝑉𝑗 𝑡 =  
𝑖
𝛿 𝑡 − 𝑡𝑖

Step 2. Synaptic current response

𝐼𝑗 𝑡, 𝑡𝑖 =  𝑤𝑗 𝑒−
𝑡−𝑡𝑖
𝜏 − 𝑒−

𝑡−𝑡𝑖
4𝜏 , 𝑖𝑓 𝑡 > 𝑡𝑖

0, 𝑖𝑓 𝑡 ≤ 𝑡𝑖

Step 3. Integration of synaptic current

𝐼 𝑡 = 
𝑗
𝐼𝑗(𝑡)

Step 4. Output spike 
𝑉𝑜 𝑡 = LIF 𝐼(𝑡)

Mapping function between input-output                              

Leaky Integrate-and-Fire (LIF) Neuron 

𝜏
𝑑𝑣

𝑑𝑡
= 𝑣𝑟𝑒𝑠𝑒𝑡 − 𝑣 𝑡 + 𝑅𝐼(𝑡)

𝑖𝑓 𝑣(𝑡) ≥ 𝑉th
𝑡ℎ𝑒𝑛 𝑣 𝑡 + 1 ← 𝑣𝑟𝑒𝑠𝑒𝑡

Neural Network Astrocytic Network Tripartite Synapse

Neurons encode information in spike rate

LIF

To capture the dynamics of the interaction between the 
neuronal and the astrocytic component of the networks



Neural Network Astrocytic Network Tripartite Synapse

Inter-cellular Ca2+ wave propagation in space and time 𝑐𝑖 𝑟𝑖 , 𝑡 = 𝑎𝑖 ∙ 𝑔𝑖 𝑟𝑖 , 𝑡

𝑔𝑖 𝑟𝑖 , 𝑡 = 𝑒𝑥𝑝 −
𝑟𝑖 − 𝜇 ∙ 𝑣 ∙ 𝑡

𝜏𝑑𝑒𝑐𝑎𝑦
− 𝑒𝑥𝑝 −

𝑟𝑖 − 𝜇 ∙ 𝑣 ∙ 𝑡

𝜏𝑟𝑖𝑠𝑒

the distance of astrocyte 𝑖 from the origination site (𝑟0 ≡ 0)

intracellular Ca2+ level in astrocyte 𝑖 at time t

𝑎𝑖 = 𝑎0 ∗ 𝑛 ∗ exp −
𝑖

𝜏𝑑

• 𝜏𝑑𝑒𝑐𝑎𝑦, 𝜏𝑟𝑖𝑠𝑒 control the fall and rise time of the Ca2+ wave

• 𝜏𝑑 controls the magnitude of the amplitude fall-off between astrocytes
• µ captures the permeability of the cells through which the wave propagates 

with speed 𝑣 - lumping together all the sub-mechanisms of gap-junctional and 
extracellular communication 

• n is the normalization constant for biexponential function, which is a function 
of the rise and decay parameterμm

s

nM



Isyn

Neural Network Astrocytic Network Tripartite Synapse



𝑑𝑥

𝑑𝑡
=

𝑧

𝜏𝑟𝑒𝑐
− 1 − 𝑓 ∙ 𝑢 ∙ 𝑥 ∙ 𝛿 𝑡 − 𝑡𝑠𝑝

𝑑𝑦

𝑑𝑡
= −

𝑦

𝜏𝑖𝑛
+ 1 − 𝑓 ∙ 𝑢 ∙ 𝑥 ∙ 𝛿 𝑡 − 𝑡𝑠𝑝

𝑑𝑧

𝑑𝑡
=

𝑦

𝜏𝑖𝑛
−

𝑧

𝜏𝑟𝑒𝑐

𝑥 + 𝑦 + 𝑧 = 1 are the fractions of synaptic

resources in a recovered, active, inactive state

𝑢 is the fraction of 𝑥 released when a spike

arrives at the synapse at time 𝑡𝑠𝑝

= A ∙ y(t)

synaptic 

current

synaptic

strength

𝜏𝑖𝑛 is the characteristic time of

postsynaptic currents (PSCs) decay

𝜏𝑟𝑒𝑐 is the recovery time from

synaptic depression

M. Tsodyks, A. Uziel, and H. Markram
Synchrony generation in recurrent networks with 
frequency-dependent synapses J. Neurosci. 2000

Neural Network Astrocytic Network Tripartite Synapse

Isyn



𝛩(𝑥) Heaviside function

𝑐𝑡ℎ𝑟𝑒𝑠ℎ is [intracellular Ca2+] needed 

to activate 𝑓

𝜏𝐶𝑎 is the decay constant of 𝑓

𝜅 controls the rise time of 𝑓

𝑓 is the gating variable

It models Ca2+-dependent presynaptic inhibition

Isyn

Isyn = A ∙ y(t)

𝑑𝑥

𝑑𝑡
=

𝑧

𝜏𝑟𝑒𝑐
− 1 − 𝑓 ∙ 𝑢 ∙ 𝑥 ∙ 𝛿 𝑡 − 𝑡𝑠𝑝

𝑑𝑦

𝑑𝑡
= −

𝑦

𝜏𝑖𝑛
+ 1 − 𝑓 ∙ 𝑢 ∙ 𝑥 ∙ 𝛿 𝑡 − 𝑡𝑠𝑝

𝑑𝑧

𝑑𝑡
=

𝑦

𝜏𝑖𝑛
−

𝑧

𝜏𝑟𝑒𝑐

𝑑𝑓

𝑑𝑡
= −

𝑓

𝜏𝐶𝑎
+ 1 − 𝑓 ∙ 𝜅 ∙ 𝛩 𝑐𝑖 𝑟𝑖 , 𝑡 − 𝑐𝑡ℎ𝑟𝑒𝑠ℎ

Neural Network Astrocytic Network Tripartite Synapse

𝑥 + 𝑦 + 𝑧 = 1 are the fractions of synaptic

resources in a recovered, active, inactive state

𝑢 is the fraction of 𝑥 released when a spike

arrives at the synapse at time 𝑡𝑠𝑝

𝜏𝑖𝑛 is the characteristic time of

postsynaptic currents (PSCs) decay

𝜏𝑟𝑒𝑐 is the recovery time from

synaptic depression

Isyn



Astrocytes inject into the post-synaptic 
neuron a slow-injected current (SICs) 

SICs 

• are well fit to bi-exponential distributions

• have a rapid rise time (on the order of tens of ms)

• have a comparatively larger decay time (on the order of hundreds of ms)

• are correlated with Ca2+ wave peaks in both time and amplitude

Upon reaching a Ca2+ peak, an
astrocyte releases glio-
transmitters that lead to
NMDAR-mediated SICs, with
the SIC amplitude being
logarithmically proportional to
the Ca2+ wave amplitude.

Isyn

Iastro = 2.11 ∙
𝜇𝐴

𝑐𝑚2
∙ 𝑙𝑛 𝑤 ∙ 𝛩 𝑙𝑛 𝑤

𝑤 = 𝑐𝑖  𝑟𝑖 , 𝑡 𝑛𝑀 − 196.69

ISIC 𝑡 = Iastro 𝑐𝑖 𝑟𝑖 , 𝑡 = cpeak 𝑒𝑥𝑝 −
𝑡

𝜏𝑑𝑒𝑐𝑎𝑦
𝑆𝐼𝐶 − 𝑒𝑥𝑝 −

𝑡

𝜏𝑟𝑖𝑠𝑒
𝑆𝐼𝐶

Neural Network Astrocytic Network Tripartite Synapse

Isyn



𝑑𝑥

𝑑𝑡
=

𝑧

𝜏𝑟𝑒𝑐
− 1 − 𝑓 ∙ 𝑢 ∙ 𝑥 ∙ 𝛿 𝑡 − 𝑡𝑠𝑝

𝑑𝑦

𝑑𝑡
= −

𝑦

𝜏𝑖𝑛
+ 1 − 𝑓 ∙ 𝑢 ∙ 𝑥 ∙ 𝛿 𝑡 − 𝑡𝑠𝑝

𝑑𝑧

𝑑𝑡
=

𝑦

𝜏𝑖𝑛
−

𝑧

𝜏𝑟𝑒𝑐
𝑑𝑓

𝑑𝑡
= −

𝑓

𝜏𝐶𝑎
+ 1 − 𝑓 ∙ 𝜅 ∙ 𝛩 𝑐𝑖 𝑟𝑖 , 𝑡 − 𝑐𝑡ℎ𝑟𝑒𝑠ℎ

Isyn

Isyn = A ∙ y(t)

Neural Network Astrocytic Network Tripartite Synapse

Iastro = 2.11 ∙
𝜇𝐴

𝑐𝑚2
∙ 𝑙𝑛 𝑤 ∙ 𝛩 𝑙𝑛 𝑤

𝑤 = 𝑐𝑖  𝑟𝑖 , 𝑡 𝑛𝑀 − 196.69

ISIC 𝑡 = Iastro 𝑐𝑖 𝑟𝑖 , 𝑡 = cpeak 𝑒𝑥𝑝 −
𝑡

𝜏𝑑𝑒𝑐𝑎𝑦
𝑆𝐼𝐶 − 𝑒𝑥𝑝 −

𝑡

𝜏𝑟𝑖𝑠𝑒
𝑆𝐼𝐶

Isyn
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Bryant et al. Nature Reviews, 2004

Putting a Neural-Astrocytic Network to Sleep

Oscillations emerge as a network property

Probabilistic neural connections, 
with a Gaussian fall-off 

𝑃 𝑟 𝑖𝑗 = 𝑃𝑚𝑎𝑥𝑒𝑥𝑝 −  𝑟𝑖𝑗
2 2𝜎2

• 𝑟𝑖𝑗 the distance between 

neurons 𝑖 and 𝑗
• 𝑃𝑚𝑎𝑥 and 𝜎 are the peak and 

width of the probability 
distribution

• No function – just basal 
neural activity

Local Sleep in Awake Rats, Nature 2011



"This hypothesis was reinforced by a recent
modelling study showing that intercellular Ca2+
signaling potentially can introduce slow oscillation
in neurons [our Ref]. Our experimental data
strongly supports this hypothesis by
demonstrating that increasing astrocytic influence
on neurons indeed drives them to join the
oscillatory activity (Fig. 5C). In this context it is also
important to note, that the ratio of astrocytes
involved in the SWA was found to start decreasing
right after virtually all neurons joined the
simultaneous activity (Figs 4 and 5). This
observation further supports the view that
astrocytic activity corresponds to the generation
or maintenance, rather than termination of SWA."
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brain oscillations

• Rhythmic or repetitive electrical activity generated 

spontaneously or in response to stimuli by the neurons

• Studied for 100 years (EEG, MEG, fMRI, PET, MER)

• Encode and process brain information flow

• Communication through coherence: interregional communication 

is established when the oscillatory activity between neuronal 

pools is coherent (Fries 2005; 2009)

• Related to all aspects of human behavior

• cognitive, sensory, and motor tasks

• All brain diseases are associated with oscillatory imbalances

are still lacking a mechanistic origin



Introducing function into a Neural-Astrocytic Network

• The idea of memories as energy minima was proposed by 

I.A. Richards in 1924 in “Principles of Literary Criticism”

• Hopfield (1982) proposed that memories could be energy 

minima of a neural net

• Using energy minima to represent memories gives a 

content-addressable memory

• Memories are stored in the synapses

NAN Hopfield Nets

With 19,000 citations, 
Hopfield nets 

are the precursors of 
Boltzman Machines (BM), 

Restricted BM and Deep Belief 
Networks 



• A Hopfield net is composed of binary threshold units with recurrent connections between them

• Recurrent nets of non-linear units are generally hard to analyze. They can: 

Settle to a stable state | Oscillate | Follow chaotic trajectories that cannot be predicted far into the features

ON ON ON

ON

ON

ON

OFF OFF

OFF OFF

OFF OFF

• Hopfield (and others) realized that if the connections are symmetric, there is a global energy function

• Each binary configuration of the whole network has an energy

• The binary threshold decision rule causes the network to settle to a minimum of this energy function

Fully connected (not shown)



Goal: To generate a sequence of patterns 

• by going through a predetermined (by the astrocytes) sequence, in a closed limit cycle

• Sequences of patterns occur widely in biological sequences (e.g., walking, learning a task, rehab)



Network

N neurons with values 𝑥𝑖 = ±1, 𝑖 = 1,… , 𝑁

Fully connected neurons, i.e., every neuron 

is connected to every other neuron

Connectivity weight 𝑤𝑖𝑗 = 𝑤𝑗𝑖 , 𝑤𝑖𝑖 = 0

Neuron

aligns with the local field, ℎ𝑖:

𝑠𝑖 𝑡 + 1 = 𝑠𝑛𝑔 ℎ𝑖 𝑡

ℎ𝑖 𝑡 = ℎ𝑖 𝑡
𝑛𝑒𝑢𝑟𝑎𝑙 + ℎ𝑖 𝑡

𝑎𝑠𝑡𝑟𝑜

ℎ𝑖 𝑡
𝑛𝑒𝑢𝑟𝑎𝑙 = 

𝑗=1

𝑁

𝐽𝑖𝑗𝑠𝑗 𝑡

ℎ𝑖 𝑡
𝑎𝑠𝑡𝑟𝑜 =  𝑗=1

𝑁 𝑇𝑖𝑗𝑆𝐶𝑗 𝑡

stabilizing symmetric matrix
(short-time connections)

matrix of amplitudes for the SICs
(long-time connections)

Memories

 𝜉 = 𝑥1, … , 𝑥𝑖 , … , 𝑥𝑁 ∈ −1,1 𝑁

m memories  𝜉𝑝, 𝑝 = 1,… ,𝑚

𝐽𝑖𝑗 =
1

𝑁
 𝜇
𝑚 2ξi

𝜇
− 1 2ξj

𝜇
− 1 , 𝑖 ≠ 𝑗

𝑇𝑖𝑗 =
𝜆

𝑁
 𝜇
𝑞
2ξi

𝜇+1
− 1 2ξj

𝜇
− 1 , 𝑖 ≠ 𝑗

𝑆𝐶 = 𝑒
𝑡−𝛿𝑐𝑎𝑙
𝜏𝑆𝐶



time

The dynamics of the two signals of interest in an astrocytic process: Local Ca2+ wave which rises

in response to the presynaptic activity and the related SIC injected into the postsynaptic neuron.

δcal the time at which the astrocyte Ca2+ reached cthresh

Astrocytic Dynamics Astrocytic Learning



Define the linear operator  𝐿:

•  𝐿𝑃𝑡 ≡ 𝑃𝑡−1

•  𝐿2𝑃𝑡 ≡ 𝑃𝑡−2
We can solve for 𝑃𝑡:

𝑃𝑡 =
𝛽𝑠𝑡

1 − 𝛼 𝐿
= 𝛽  

𝑡′=0

∞

𝛼 𝐿
𝑡′
𝑠𝑡 = 𝛽  

𝑡′=0

∞

𝛼𝑡′𝑠𝑡−𝑡′

For 𝑃𝑡 = 𝑐𝑡ℎ𝑟𝑒𝑠ℎ in the continuous limit: 
𝑐𝑡ℎ𝑟𝑒𝑠ℎ

𝛽
=  0

𝜏
𝛼𝜏−𝑡′𝑑𝑡′

with the general solution

Derive time spent in each memory τ

𝜏 =
ln(

𝑐𝑡ℎ𝑟𝑒𝑠ℎ
𝛽

ln 𝛼 + 1)

ln 𝛼

Taylor series of 
1

1−𝑥

Astrocytic Dynamics Astrocytic Learning



𝜏 =
ln 1−𝑐𝑡ℎ𝑟𝑒𝑠ℎ

ln 𝛼

Biological consideration. The more the astrocyte depends

on its own Ca2+ level in the previous time-step (α), the

less it depends on the presynaptic neural activity (β).

 

0

𝜏

𝛽𝛼𝑡𝑑𝑡 = 1 𝛽 = l n
1

𝑎

𝜏 =
ln(

𝑐𝑡ℎ𝑟𝑒𝑠ℎ
𝛽

ln 𝛼 + 1)

ln 𝛼

Astrocytic Dynamics Astrocytic Learning

Derive time spent in each memory τ



For a fixed α, increasing cthresh increases

the time it takes for an astrocyte process

to release an SC, thus increases τq

𝜏 =
ln 1−𝑐𝑡ℎ𝑟𝑒𝑠ℎ

ln 𝛼

Astrocytic Dynamics Astrocytic Learning

Derive time spent in each memory τ



The overlap of the neural network state with the stored memories. N = 500, p=7, q=6 

Intuition

• The NAN has an energy surface that has 

minima at each memory 𝜉𝑖
𝜈 but which also 

tilts steadily while the system is in a particular 

state, so that a downhill move from 𝜉𝑖
𝜈to 

𝜉𝑖
𝜈+1occurs eventually

• But this picture is a little deceptive, because the dynamics 

cannot be represented simply as descent on an energy 

landscape, unless the connections are symmetric

Astrocytic Dynamics Astrocytic Learning



Astrocytic Learning of Hebbian-type

Δ𝑇𝑖𝑗 = 𝜂𝑠𝑖 𝑡𝑠𝑤𝑖𝑡𝑐ℎ 𝑃𝑗 𝑡𝑠𝑤𝑖𝑡𝑐ℎ = 𝜂𝑠𝑖 𝑡𝑠𝑤𝑖𝑡𝑐ℎ 𝑠𝑗 0 = 𝜂𝜉𝑖
𝜇+1

𝜉𝑗
𝜇

Learning rate Time btw. switching memories

𝜂 𝜂 𝜂𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑡𝑠𝑤𝑖𝑡𝑐ℎ 𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑠𝑖 𝑠𝑖

Postsynaptic state Astrocytic state = Presynaptic State

for 𝑡𝑠𝑤𝑖𝑡𝑐ℎ ≫ 0

𝑃𝑗 𝑠𝑗

• At t = tswitch, the astrocyte correlates its current state with the state of the post-synaptic neuron 

and adjusts the levels of future gliotransmitter release accordingly—changing future SIC release

• This mechanism requires retrograde signaling between the post-synaptic neuron and astrocyte 

process, known to occur through endocannabinoid mediated pathways (Fellin et al. Neuron 2004)

Astrocytic Dynamics Astrocytic Learning



What did we discover?



Leo Kozachkov, Physics/Math Major, 2016

Now a PhD student at MIT with Earl K. Miller

Brain & Cognitive Sciences Department 

Kevin T. Feigelis, Physics Major, 2016

Now a PhD student at Stanford with Dan Yamins

NeuroAI Lab



How astrocytes may encode 
information in Calcium waves

Giannis
Polykretis

Vladimir
Ivanov



Towards 
Mesochronous* Communication

* Thanks to Simon Knowles 



Biological 
Intelligence 
and NANs

Local sleep in awake rats 
Nature 2011

1 sec

Artificial 
Intelligence 
and NANs

NAN 
Applications

Astrocytes generate
brain oscillations

Astrocytes generate
sequence learning

Neural – Astrocytic Networks

Model

Data

Neuro-mimetic Robotics                                                                                  Neuro-morphic Computing 
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