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Spiking Recurrent Neural Networks

• There are key elements for a spiking recurrent neural network that must 
be defined:

– What is the topology of the network?

• How many neurons?

• Level of connectivity?

• Recurrent connections?

– What should the parameters of the network be?

• Synaptic weights

• Neuron thresholds

• Delays



Possible Training Algorithms

Topology Defined
or Trained?

Delays
Utilized?

Delays
Defined?

Weights
Defined?

Training
Time

Demonstrated
Broad 

Applicability

Back-
propagation

Some No Some Yes Medium Some

STDP Some Yes No Yes Medium No

Evolutionary 
Approaches

Yes Yes Yes Yes Slow Yes

Liquid State 
Machines

Some Yes Random Random Medium Some

Good Okay Potentially Bad



Spiking Recurrent Neural Networks for 
Neuromorphic

• Neuromorphic systems often support spiking networks, along with 
variable delays and recurrent connections.

• To fully utilize such a system, programmable weights, delays, and 
topology should be utilized. 

• Smaller networks and those with less activity may correspond to lower 
energy or power usage.

• For any given application, it is not always clear how to adapt the 
algorithm. 

– Some algorithms are relatively inflexible for non-classification 
problems.



Neuroscience-Inspired Dynamic 
Architectures (NIDA)

• Spiking neural network embedded in 3D space.

• Simple neuron (integrate-and-fire) and synapse implementation.

• Flexible structure. 



Memristive DANNA (mrDANNA)

• Mixed analog/digital implementation.

– Mixed signal analog neurons.

– Each synaptic weight is 
implemented with two 
memristors.

• Lower energy, better scaling than 
digital implementations.

• Fabricating with 65nm cmos 10lpe 
node in collaboration with CNSE, 
SUNY PI, Albany, NY.



Evolutionary Optimization for 
Neuromorphic Systems (EONS)



Reservoir Computing Approach



Data from MINERvA (Main Injector 
Experiment for v-A)

• Neutrino scattering experiment at 
Fermi National Accelerator Laboratory

• The detector is exposed to the NuMI
(Neutrinos at the Main Injector) 
neutrino beam.

• Millions of simulated neutrino-nucleus 
scattering events were created.

• Classification task is to classify the 
horizontal region where the interaction 
originated.

MINERvA Detector

Source: A. Terwilliger, et al. Vertex Reconstruction of Neutrino Interactions using Deep Learning. IJCNN 2017.



Two Data Inputs Types (Three Views)



Best Results: Single View

Convolutional Neural Network Result: ~80.42%

Spiking Neural Network Result: ~80.63%

Source for CNN results: A. Terwilliger, et al. Vertex Reconstruction of Neutrino Interactions using Deep Learning. IJCNN 2017.

• 90 neurons, 86 synapses

• Estimated energy for a single 
classification for mrDANNA
implementation: 1.66 μJ



Preliminary Results

Number of Nodes Maximum Classification 
Accuracy after One Hour

100 70.82%

1000 72.6%

10000 79.11%

This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE 
Office of Science User Facility supported under Contract DE-AC05-00OR22725.



Best Network Performance



Updated Fitness Function Results

Punish networks that don’t choose every label at least once. 

• 140 neurons
• 355 synapses
• Training accuracy: 86.57%
• Test accuracy: 83.62%



Preliminary Reservoir Computing 
Results

• Training accuracy: 95.33%

• Test accuracy: 81.03% 



Comparison of Different Methods



Conclusions and Discussion

• We achieved the best performance with the spiking neural network 
trained using evolutionary optimization, but liquid state machines also 
show promising results.

• All three approaches produced comparable accuracies.

• There is a tradeoff in the resulting network size and the training time to 
achieve such a network.

• Back-propagation and liquid state machines may be able to be trained 
faster with less resources, but the resulting networks tend to be much 
larger than those designed by EONS. 

• If the resulting network is to be deployed into hardware, smaller 
networks will have a smaller footprint and will also likely required less 
power.
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