

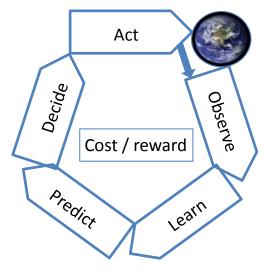
Introducing CAL: Context-Aware Learning

Campbell Scott, IBM Research Almaden

Goal: Design a robust system capable of learning by multimodal observation, continuously and unsupervised, predicting, (ultimately) making decisions and acting on them.

Outline

- 1. Architecture of network
- 2. Algorithms
- 3. Components: test and demo
 - 1. Static correlation
 - 2. Sequence memory
 - 3. Temporal pooling and correlation
 - 4. Feedback
- 4. Predicting chaos double pendulum
- 5. Scaled network auto-encoding of sequences
- 6. Summary



Summary of take-home messages

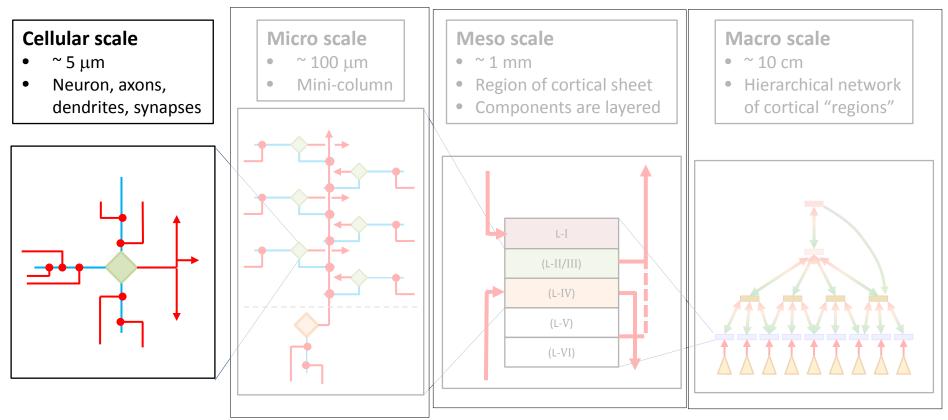
Design

- Neurological inspiration
 - Neurons in mini-columns, cortical layers (L-I.. L-VI) and hierarchy (levels)
 - Driving and modulating synapses, (modified) Hebbian updates
 - Stable network via homeostasis
 - Avoid catastrophic forgetting
- Simplicity
 - Binary neurons and synapses, sparse neural activity, sparse synapse connections
 - A few canonical functions: correlation, sequence learning, feed-forward with temporal pooling, feedback
- Importance of time
 - Learn to predict

Results

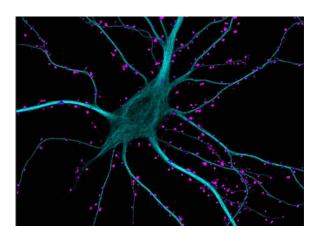
- Emergent invariance
 - Invariant representations generated in higher levels of hierarchy
- Context for current (driving) input provided by modulating synapses

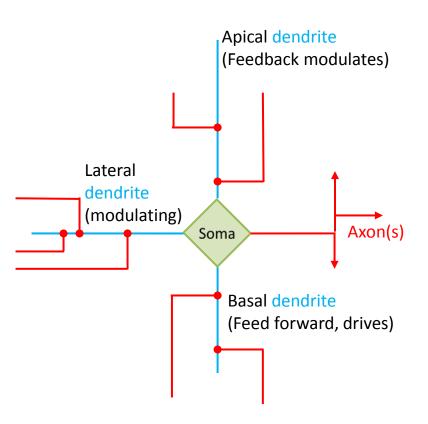
CAL architecture: biologiCAL



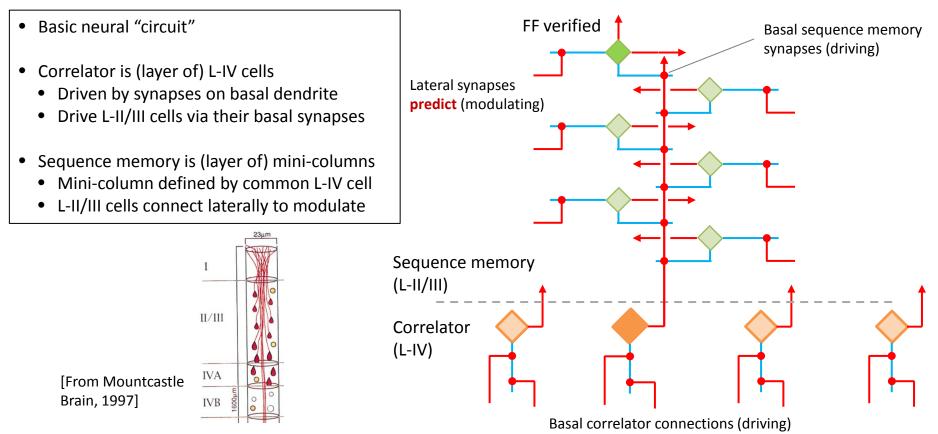
Cellular scale – single neuron

- Soma
- Dendrites (receive input)
- Driving (basal)
- Modulating (lateral and/or apical)
- Axons propagate output
- Synapses



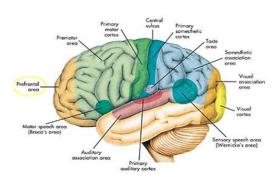


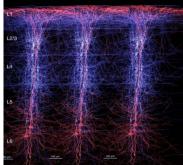
Micro scale – mini-column



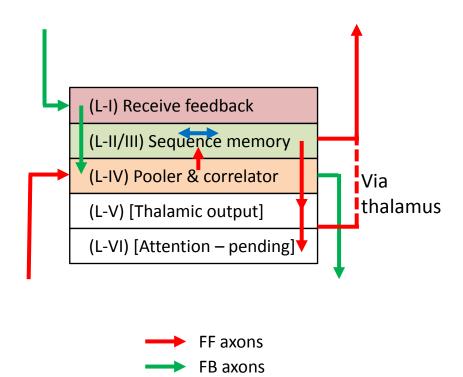
Meso scale – cortical region

- Region of cortical sheet
- Components are layered
 - Structural differences
 - Functional differences
 - (No universal agreement)
- Similar over entire cortex



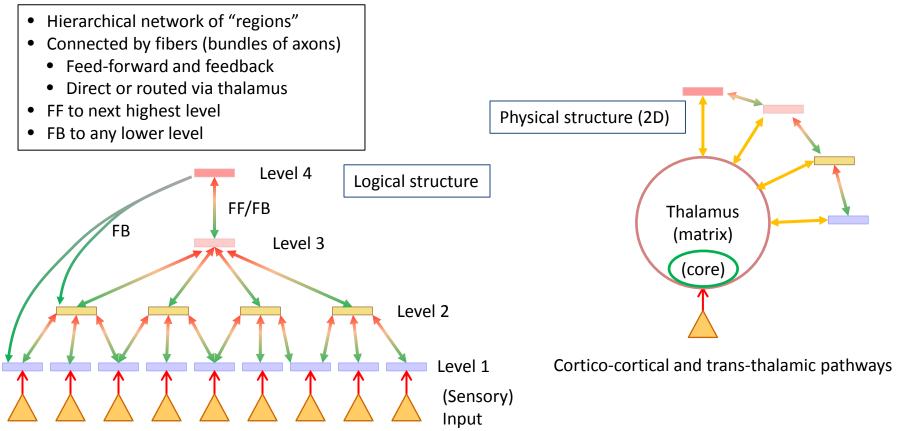


Cortex cross-section [R. Friedman Biomed. Comp. Rev. 2009]



Lat. axons

Macro scale - cortex



CALgorithms: MathematiCAL

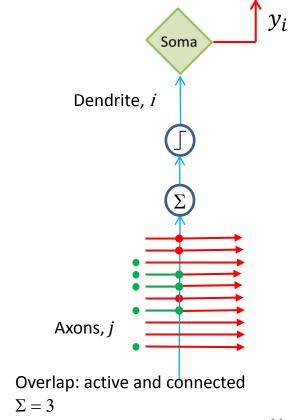
Input is axon activity, *x*, a sparse binary vector (sbv). Connectivity *C* is sparse binary matrix

Output is dendrite activity, *y*, also sbv multiply (axon active and connected) accumulate, (sum is "overlap") threshold:

$$y_i = \left(\sum_{j} c_{ij} x_j\right) \ge \tau$$

Self-adjusting threshold & k-winners-take-all

$$y = Cx \ge \tau$$
; τ such that $|y| = k$



Threshold modulation – provides context

Lateral activity (overlap $\Sigma^{(L)}$) provides context of current sequence (e.g. '...ABC')

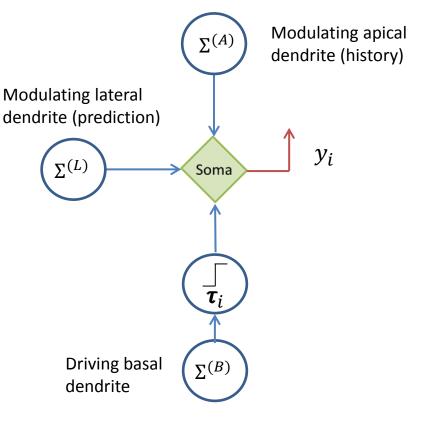
Prediction via reduction of basal threshold of 'D' mini-columns

$$\tau_i = \tau/g_i^{(L)};$$
 "gain" $g_i^{(L)} \sim \Sigma^{(L)}$

Lower threshold is equivalent to higher overlap

$$y_i = \Sigma^{(B)} \ge \tau_i \qquad \Rightarrow y_i = \left(g_i^{(L)} \Sigma^{(B)}\right) \ge \tau$$

Similarly apical overlap. Feedback provides prior context, to sustain basal activity.



Synapse update – following Hebb

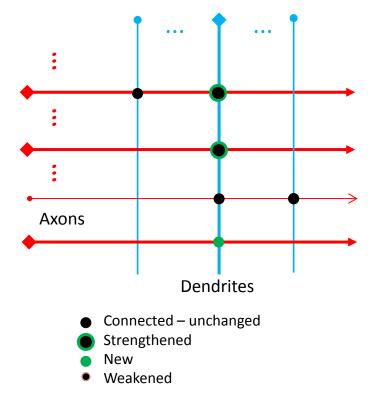
- Synapse "permanence" is scalar property
- Connectivity (weight) is binarized permanence (*cf*. Numenta HTM)

Hebb

- Both pre- and post-synaptic neurons active: strengthen (increase permanence) or create new one
- Only one active: weaken (decrease permanence)

Correlation

- When two axons are often active simultaneously, they connect to the same dendrite
- When two axons are rarely active simultaneously, they connect to different dendrites



Maintain a balance – homeostasis

Dendrite sensitization

• Lower threshold (increase gain) for dendrites with few connections

"Proportional Hebb"

 Increase/decrease in inverse proportion to number being updated i.e. maintain roughly constant mean permanence

"Conditional Hebb"

- If axon or dendrite has excess connections, do not strengthen
- If axon or dendrite has too few connections, do not weaken i.e. maintain roughly equal number of connected synapses

"Pruning"

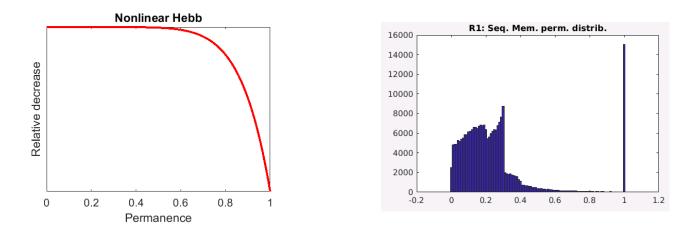
 Remove excess weak synapses cf. mechanism during sleep

Do not forget - long term memory

"Nonlinear Hebb" to avoid "catastrophic forgetting"

Reduce permanence decrements for well established synapses

$$\delta p \sim (1 - p^{\gamma}), \qquad \gamma > 5$$



Results in two populations of synapses: plastic and permanent

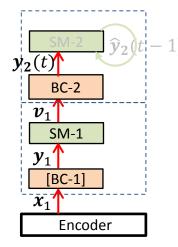
Temporal pooling and correlation (towards invariance)

Feed forward from SM-1 to BC-2 verified neurons : $v_1(t)$ predicted at *t*-1, active at *t*

Pool by union of consecutive FF inputs:

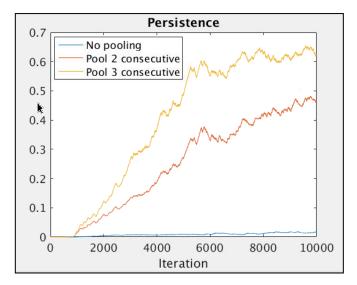
 $x_2(t) = v_1(t) \cup v_1(t-1) \cup v_1(t-2) \dots$

Network: 2 regions (1-1)



Metric: persistence (fraction of bits that remain on in two consecutive iterations)

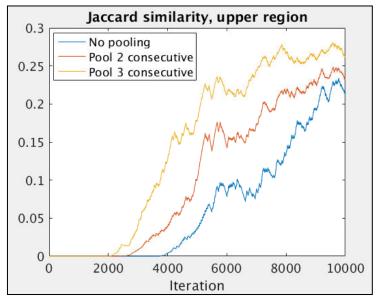
 $\Pi(t) = \frac{|\mathbf{y}_2(t-1) \cap \mathbf{y}_2(t)|}{|\mathbf{y}_2(t-1)|}$



Text input: 3 sentences, selected in random order. Total of 10,000 characters

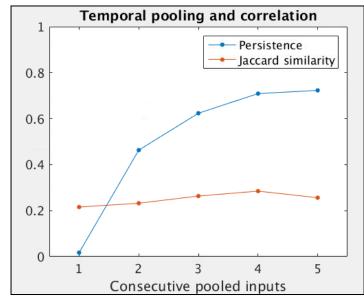
The quick brown fox jumps over a lazy dog. The 1990s saw the emergence of cognitive models. CAL is built on several fundamental principles.

Temporal pooling (cont.) – Learning rate, persistence



Jaccard similarity: normalized match of previous prediction and current "truth" $J = \frac{|\hat{y}_2(t-1) \cap y_2(t)|}{|\hat{y}_2(t-1) \cup y_2(t)|}$

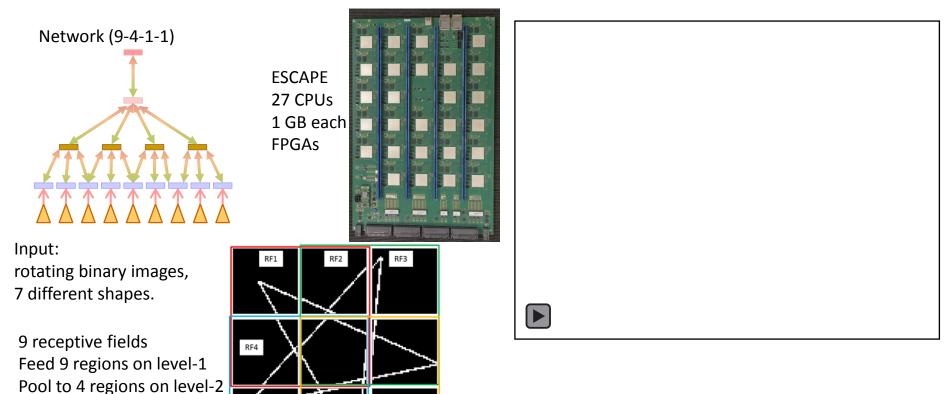
$$y_2(t)$$
 $\hat{y}_2(t-1)$



Temporal pooling (union of consecutive inputs)

- generates increasing stability of representation
- accelerates learning

Scaling the hierarchy – video sequences

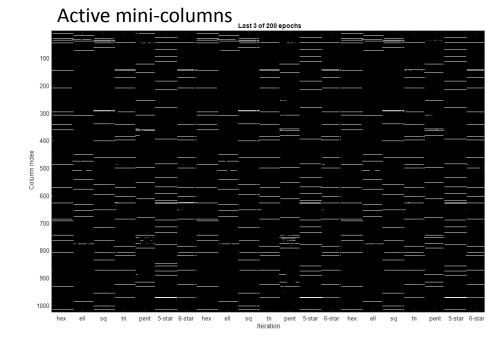


RF9

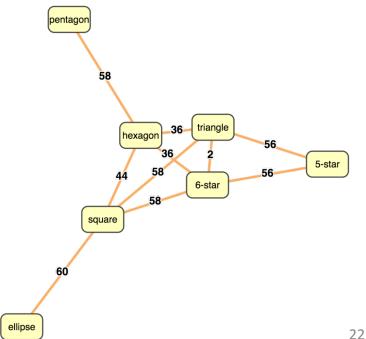
1 region on levels 3, 4

Building the hierarchy – auto-encoding of sequences

Representations $(y_{4,1})$ in top region are stable for each shape



Hamming distances (max. 64) between representations as "force" diagram (Blank edges are orthogonal, d = 64)



Summary - pedagogiCAL

Design

- Neurological inspiration
 - Neurons in mini-columns, cortical layers (L-I.. L-VI) and hierarchy (levels)
 - Driving and modulating synapses, (modified) Hebbian updates
 - Stable network via homeostasis (dendrite sensitization, proportional, conditional Hebb)
 - Avoid catastrophic forgetting (nonlinear Hebb)
- Simplicity
 - Binary neurons and synapses, sparse neural activity, sparse synapse connections
 - Active axons and connected synapses (overlap) and floating threshold
 - A few canonical functions:
 (so far) correlation, sequence learning, feed-forward with temporal pooling, feedback
- Importance of time
 - Learn to predict

Results

- Emergent invariance
 - Invariant representations generated in upper levels of hierarchy
- Context for current (**driving**, basal) input provided by **modulating** (lateral, apical) synapses

KATE

Acknowledgments

Hernan Badenes Ahmet Ozcan Wayne Imaino Winfried Wilcke Charles Cox Pritish Narayanan Kamil Rocki Geoff Burr Bob Shelby Tomasz Kornuta Jayram Thathachar David Pease Alexis Asseman

Numenta Jeff Hawkins Subutai Ahmad

SAMSUNG

Hyong-Euk (Luke) Lee