Efficient Biosignal Processing with Brain-inspired High-dimensional Computing:

A Universal ExG Classifier

Abbas Rahimi, Pentti Kanerva, Luca Benini, Jan M. Rabaey
ETH Zurich and UC Berkeley

Brain-inspired High-dimensional Computing

[P. Kanerva, An Introduction to Computing in Distributed Representation with High-Dimensional Random Vectors, *Cogn Comput'09*]

- Emulation of cognition by computing with high-dimensional vectors as opposed to computing with numbers
- Information distributed in high-dimensional space
- Supports full algebra

Superb properties:

- General and scalable model of computing
- Well-defined set of arithmetic operations
- Fast and one-shot learning (no need of back-prop)
- Memory-centric with embarrassingly parallel operations
- Extremely robust against most failure mechanisms and noise
- Energy efficient

Brain-inspired High-dimensional Computing

[P. Kanerva, An Introduction to Computing in Distributed Representation with High-Dimensional Random Vectors, *Cogn Comput'09*]

- Emulation of cognition by computing with high-dimensional vectors as opposed to computing with numbers
- Information distributed in high-dimensional space
- Supports full algebra

Superb properties:

- General and scalable model of computing
- Well-defined set of arithmetic operations
- Fast and one-shot learning (no need of back-prop)
- Memory-centric with embarrassingly parallel operations
- Extremely robust against most failure mechanisms and noise
- Energy efficient

Combine and Compare

Combine and Compare

bipolar binary dense sparse

Approximate computation with fixed-size long random patterns that provides a novel look at data representations, associated operations, circuits, and architectures.

Mapping to HD Vectors

 Each letter (symbol) is represented by an HD vector chosen at random with 10,000-d:

- Every letter HD vector is dissimilar to others: (A, B) = 0
- This assignment is fixed throughout computation

HD Arithmetic

Componentwise addition (+) is good for representing sets,
 since sum vector is similar to its constituent vectors:

$$\langle A+B,A\rangle = 0.5$$

Componentwise multiplication (*) is good for binding,
 since product vector is dissimilar to its constituent vectors:

$$\langle A*B,A\rangle = 0$$

 Permutation (p) makes a dissimilar vector by rotating, it good for representing sequences:

$$\langle A, \rho A \rangle = 0$$

* and p are invertible and preserve distance

How to encode "Ich bin"?

How to encode "Ich bin"?

```
I = +1 -1 -1 +1 -1 -1 \dots +1 +1 -1 -1
```

$$C = +1 -1 +1 +1 +1 +1 \dots +1 -1 +1 -1$$

$$H = +1 +1 +1 -1 -1 +1 \dots +1 -1 +1 +1$$

How to encode "Ich bin"?

```
Trigram encoding: "Ich" = ppI * pC * H

I = +1 -1 -1 +1 -1 -1 ... +1 +1 -1 -1 +1 -1

/ / / / / / / / / / / / / / /

C = +1 -1 +1 +1 +1 +1 ... +1 -1 +1 -1 +1

/ / / / / / / / / /

H = +1 +1 +1 -1 -1 +1 ... +1 -1 +1 +1

"Ich"= +1 +1 -1 +1 ... +1 -1 -1
```

How to encode "Ich bin"?

```
Trigram encoding: "Ich" = ppI * pC * H

I = +1 -1 -1 +1 -1 -1 ... +1 +1 -1 -1 +1 -1

/ / / / / / / / / / / / /

C = +1 -1 +1 +1 +1 +1 ... +1 -1 +1 -1 +1

/ / / / / / / /

H = +1 +1 +1 -1 -1 +1 ... +1 -1 +1 +1

"Ich"= +1 +1 -1 +1 ... +1 -1 -1
```

Adding trigrams: "Ich bin" =

```
How to encode "Ich bin"?
 Trigram encoding: "Ich" = \rho \rho I * \rho C * H
   I = +1 -1 -1 +1 -1 -1 \dots +1 +1 -1 -1 +1 -1
   C = +1 -1 +1 +1 +1 +1 \dots +1 -1 +1 -1 +1
   H = +1 +1 +1 -1 -1 +1 \dots +1 -1 +1 +1
 "Ich" = +1 +1 -1 +1 .... +1 +1 -1 -1
Adding trigrams: "Ich pin" =
"Ich" = +1 +1 -1 +1 -1 +1
"ch" = -1 -1 +1 +1 -1 +1
"h b" = -1 -1 +1 +1 +1 -1 ....
" bi'' = +1 -1 +1 -1 -1 -1 \dots
"bin" = -1 + 1 + 1 - 1 - 1 + 1 \dots
```

How to encode "Ich bin"? Trigram encoding: "Ich" = $\rho \rho I * \rho C * H$ $I = +1 -1 -1 +1 -1 -1 \dots +1 +1 -1 -1 +1 -1$ $C = +1 -1 +1 +1 +1 +1 \dots +1 -1 +1 -1 +1$ $H = +1 +1 +1 -1 -1 +1 \dots +1 -1 +1 +1$ "Ich" = +1 +1 -1 +1 +1 +1 -1 -1 Adding trigrams: "Ich pin" = "Ich" = +1 +1 -1 +1 -1 +1"ch " = -1 -1 +1 +1 -1 +1"h b" = -1 -1 +1 +1 -1" bi'' = +1 -1 +1 -1 -1 -1"bin" = -1 + 1 + 1 - 1 - 1 + 1= -1 -1 +1 +1 -1 +1

EU Language Recognition Identical hardware for both learning and inference

Train with 100 KB of text from 21 EU languages

EU Language Recognition Identical hardware for both learning and inference

Train with 100 KB of text from 21 EU languages

EU Language Recognition Identical hardware for both learning and inference

Train with 100 KB of text from 21 EU languages

EU Language Recognition Identical hardware for both learning and inference

Train with 100 KB of text from 21 EU languages

Train text: "der emissionserloes soll fuer den weiteren ausbau des qualitativ ..." **Item Memory** Letter HD vector 10,000-d **Encoding:** $(*,+,\rho)$ operations Language HD vector 10,000-d German -1 -1 +1 +1 -1 **Associative Memory** -1 +1 +1 -1 +1 21×10,000 *learned* language patterns

Test with 1,000 sentences for each language

8

Part of preprocessing can be eliminated

LD Space

HD Space

Part of preprocessing can be eliminated

Maps input vectors into d-dimensional (d≈10,000) pseudo-orthogonal random vectors
Nanodevice opportunity to exploit process
randomness and utilize variability

LD Space

HD Space

Part of preprocessing can be eliminated

Maps input vectors into d-dimensional (d≈10,000) pseudo-orthogonal random vectors
Nanodevice opportunity to exploit process
randomness and utilize variability

Encodes all input information into single HD vector using simple local operators $(*, +, \rho)$

Part of preprocessing can be eliminated

Maps input vectors into d-dimensional (d≈10,000) pseudo-orthogonal random vectors
Nanodevice opportunity to exploit process
randomness and utilize variability

Encodes all input information into single HD vector using simple local operators $(*, +, \rho)$

Finds closest match in trained data Can be continuously updated

LD Space

HD Space

Applications	#I	#C	HD	Baseline
Language identification [ISLPED'16]	1	21	96.7%	97.9%
Text categorization [DATE'16]	1	8	94.2%	86.4%
Speech recognition [ICRC'17]	1	26	95.3%	93.6%
EMG gesture recognition [ICRC'16]	4	5	97.8%	89.7%
Flexible EMG [ISCAS'18]	64	5	96.6%	88.9%
EEG brain-machine interface [BICT'17]	64	2	74.5%	69.5%

Applications	#I	#C	HD	Baseline
Language identification [ISLPED'16]	1	21	96.7%	97.9%
Text categorization [DATE'16]	1	8	94.2%	86.4%
Speech recognition [ICRC'17]	1	26	95.3%	93.6%
EMG gesture recognition [ICRC'16]	4	5	97.8%	89.7%
Flexible EMG [ISCAS'18]	64	5	96.6%	88.9%
EEG brain-machine interface [BICT'17]	64	2	74.5%	69.5%

Applications	#I	#C	HD	Baseline
Language identification [ISLPED'16]	1	21	96.7%	97.9%
Text categorization [DATE'16]	1	8	94.2%	86.4%
Speech recognition [ICRC'17]	1	26	95.3%	93.6%
EMG gesture recognition [ICRC'16]	4	5	97.8%	89.7%
Flexible EMG [ISCAS'18]	64	5	96.6%	88.9%
EEG brain-machine interface [BICT'17]	64	2	74.5%	69.5%

Z' IOVVCI CITCISY CHAIL SVI	\checkmark	$2\times$	lower energy than	SVN
-----------------------------	--------------	-----------	-------------------	-----

Applications	#I	#C	HD	Baseline
Language identification [ISLPED'16]	1	21	96.7%	97.9%
Text categorization [DATE'16]	1	8	94.2%	86.4%
Speech recognition [ICRC'17]	1	26	95.3%	93.6%
EMG gesture recognition [ICRC'16]	4	5	97.8%	89.7%
Flexible EMG [ISCAS'18]	64	5	96.6%	88.9%
EEG brain-machine interface [BICT'17]	64	2	74.5%	69.5%

Many variants of same ...

Applications	#I	#C	HD	Baseline
Language identification [ISLPED'16]	1	21	96.7%	97.9%
Text categorization [DATE'16]	1	8	94.2%	86.4%
Speech recognition [ICRC'17]	1	26	95.3%	93.6%
EMG gesture recognition [ICRC'16]	4	5	97.8%	89.7%
Flexible EMG [ISCAS'18]	64	5	96.6%	88.9%
EEG brain-machine interface [BICT'17]	64	2	74.5%	69.5%

- ✓ 2× lower energy than SVM Embedded Accelerator (28nm, 1.5mm², 2mW) [DAC'18]
- ✓ 256 channels: 10 ms realtime constraints
- ✓ 10× lower energy than ARM Cortex-M4

HD Learns 3× Faster

EMG (8 gel-based electrodes)

SVM needs **3.2**× more trials [ICRC'16]

HD Learns 3× Faster

EMG (8 gel-based electrodes)

SVM needs **3.2**× more trials [ICRC'16]

EEG (64 electrodes)

Gaussian needs **3×** more trials

and preprocessing [BICT'17]

HD Learns 3× Faster

EMG (8 gel-based electrodes)

SVM needs **3.2**× more trials [ICRC'16]

EEG (64 electrodes)

Gaussian needs **3×** more trials and preprocessing [BICT'17]

Flexible high-density electrode array [ISCAS'18]

Train/Test 30 mins apart

One-shot: 89.2%

HD Learns 3× Faster

EMG (8 gel-based electrodes)

SVM needs **3.2**× more trials [ICRC'16]

EEG (64 electrodes)

Gaussian needs **3×** more trials and preprocessing [BICT'17]

Flexible high-density electrode array [ISCAS'18]

One-shot: 89.2%

With repositioning: 82.%

SVM: 51%

The True Opportunity for HD

3D Integration and Nanoscale Devices

The True Opportunity for HD

3D Integration and Nanoscale Devices

The True Opportunity for HD

3D Integration and Nanoscale Devices

VRRAM

Robustness in low SNR:

- Seed hypervectors with i.i.d. components
- MAP operations are nearly i.i.d.-preserving
- Holographic: a failure in a component is not "contagious"
- HD algorithm is data-driven with (almost) no control flow conditions

High Order Bits

- Simple HD architectural templates to encode analog input signals for various biosignal applications
- Fully scalable
- Identical hardware for leaning and inference
- Fast learning under low SNR conditions
 - Enabling online and continuous learning!

Relevant publications

- A. Rahimi, A. Tchouprina, P. Kanerva, J. del R. . Millan, J. M. Rabaey, "Hyperdimensional Computing for Blind and One-Shot Classification of EEG Error-Related Potentials," In ACM/Springer Mobile Networks & Applications (MONET), Special Issue on Biologically Inspired Networking, 2017. [PDF]
- A. Rahimi, S. Datta, D. Kleyko, E. P. Frady, B. Olshausen, P. Kanerva, J. M. Rabaey, "High-dimensional Computing as a Nanoscalable Paradigm," In IEEE Transactions on Circuits and Systems (TCAS-I), 2017. [PDF]
- A. Rahimi, P. Kanerva, J. del R. Millan, J. M. Rabaey, "Hyperdimensional Computing for Noninvasive Brain-Computer Interfaces: Blind and One-Shot Classification of EEG Error-Related Potentials," In 10th EAI International Conference on Bio-inspired Information and Communications Technologies (BICT), March 2017. [Best]
 Paper] [PDF] [PPTX][Artifact]
- M. Imani, D. Kong, A. Rahimi, T. Rosing, "VoiceHD: Hyperdimensional Computing for efficient Speech Recognition,"
 In IEEE International Conference on Rebooting Computing (ICRC), 2017. [PDF]
- A. Rahimi, S. Benatti, P. Kanerva, L. Benini, and J. M. Rabaey, "Hyperdimensional Biosignal Processing: A Case Study for EMG-based Hand Gesture Recognition," In IEEE International Conference on Rebooting Computing (ICRC), 2016. [PDF] [PPTX] [Artifact] [Video]
- A. Rahimi, P. Kanerva, and J. M. Rabaey, "A Robust and Energy-Efficient Classifier Using Brain-Inspired Hyperdimensional Computing," In ACM/IEEE International Symposium on Low-Power Electronics and Design (ISLPED), 2016. [PDF] [PPTX] [Artifact]
- H. Li, T. Wu, A. Rahimi, K.-S. Li, M. Rusch, C.-H. Lin, J.-L. Hsu, M. Sabry, S. Burc Eryilmaz, J. Sohn, W.-C. Chiu, M.-C. Chen, T.-T. Wu, J.-M. Shieh, W.-K. Yeh, J. M. Rabaey, S. Mitra and H.-S. P. Wong, "Hyperdimensional Computing with 3D VRRAM In-Memory Kernels: Device-Architecture Co-Design for Energy-Efficient, Error-Resilient Language Recognition," In IEEE International Electron Devices Meeting (IEDM), 2016. [PDF] [PPTX]
- F. R. Najafabadi, **A. Rahimi**, P. Kanerva, and J. M. Rabaey, "Hyperdimensional Computing for Text Classification," In ACM/IEEE Design, Automation, and Test in Europe Conference (DATE), University Booth, March 2016. [PDF] [Poster]
- A. Moin, A. Zhou, A. Rahimi, S. Benatti, A. Menon, S. Tamakloe, J. Ting, N. Yamamoto, Y. Khan, F. Burghardt, L. Benini, A. C. Arias, J. M. Rabaey, "An EMG Gesture Recognition System with Flexible High-Density Sensors and Brain-Inspired High-Dimensional Classifier," In *IEEE International Symposium on Circuits and Systems (ISCAS)*, 2018. [PDF]
- F. Montagna, A. Rahimi, S. Benatti, D. Rossi, L. Benini, "PULP-HD: Accelerating Brain-Inspired High-Dimensional Computing on a Parallel Ultra-Low Power Platform," IEEE/ACM Design Automation Conference (DAC), 2018.