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Brain-inspired High-dimensional Computing

[P. Kanerva, An Introduction to Computing in Distributed Representation with
High-Dimensional Random Vectors, Cogn Comput’09]

* Emulation of cognition by computing with high-dimensional
vectors as opposed to computing with numbers

* Information distributed in high-dimensional space
e Supports full algebra

Superb properties:

* General and scalable model of computing

 Well-defined set of arithmetic operations

* Fast and one-shot learning (no need of back-prop)

* Memory-centric with embarrassingly parallel operations

* Extremely robust against most failure mechanisms and noise
* Energy efficient
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What Are HD Vectors?

It is all about data representation

1st 2nd 3rd 4th 10000th
[-1 +1 -1 -1 .............. +1]
I I I I

High-diménsional Holographic | | Distributed PseudorandomWith i.i.d. components

bipolar
Combine and Compare binary

dense
sparse

Approximate computation with fixed-size long random patterns
that provides a novel look at data representations, associated
operations, circuits, and architectures.




Mapping to HD Vectors

e Each letter (symbol) is represented by an HD vector
chosen at random with 10,000-d:

A= [-1 41 -1 -1 -1 +1 -1 -1 ...]
B = [+1 -1 41 +1 +1 -1 +1 -1 ...7
C = [-1 -1 -1 41 41 -1 +1 -1 ...]
D= [-1 -1 -1 +1 41 -1 +1 -1 ...]
Z = [-1 -1 41 -1 +1 +1 +1 -1 ...T

* Every letter HD vector is dissimilar to others: (3,B) = 0
* This assignment is fixed throughout computation

Item ,
Ila” i > Memory // > A
> (iMv) 10,000




HD Arithmetic

Componentwise addition (+) is good for representing sets,
since sum vector is similar to its constituent vectors:

(A+B,A) = 0.5

Componentwise multiplication (*) is good for binding,
since product vector is dissimilar to its constituent vectors:

(A+B,A4) = 0

Permutation (p) makes a dissimilar vector by rotating, it
good for representing sequences:

(A,pA) =0

* and p are invertible and preserve distance
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I = +41 -1 -1 +41 -1 -1 ... +1 41 -1 -1

c = +1 -1 +1 +1 +1 +1 ... +1 -1 +1 -1

H = +1 +1 +1 -1 -1 +1 ... +1 -1 +1 +1




Example: Computing Language Profile

How to encode YIch| bin”?

Trigram encoding:

\\Ich// —

ppI * pC * H

I +1 -1 -1 +1 -1 -1 ... +1 +1 -1 -1 +1 -1
/S /S
C +1 -1 +1 +1 +1 +1 ... +1 -1 +1 -1 +1
/S /)
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“Ich”= +1 +1 -1 +1 +1 +1 -1 -1




Example: Computing Language Profile

How to encode YIch bin(’?

Trigram encoding:
+1 -1 -1 +1 -1 -1 ...

I

Y A

+1 -1 +1 +1 +1 +1 ...

Y Y A

+1 +1 +1 -1 -1 +1 ...

\\Ich// —

+1

+1

ppI * pC * H

+1 -1
/
-1 +1

Adding trigrams:

+1 +1 -1 +1

“TIch bin” =



Example: Computing Language Profile

How to encode

Trigram encoding:

+1

-1

+1

Adding trigrams:

W\ I ch//

\ Ch 44 —
\\h b// —
\ bi 44 —

\\binll

Tch bin[’?

“Ich” = ppI * pC * H
+1 -1 -1 +1 -1 -1 ... +1
A Y A /
+1 -1 +1 +1 +1 +1 ... +1
Y Y A /
+1 +1 +1 -1 -1 +1 +1
+1 +1 -1 +1 +1

“Ich pin|’ =
+1 +1 -1 +1 -1 +1
-1 -1 +1 +1 -1 +1
-1 -1 +1 +1 +1 -1
+1 -1 +1 -1 -1 -1
-1 +1 +1 -1 -1 +1



Example: Computing Language Profile

How to encode

Trigram encoding:

I

\\Ich//=

Adding trigrams:

W\ I ch//

+ \ Ch 44 —
\\h b// —

<+

-|- “bj_n”

\ bi 44 —

Ich bin|’?
“Ich” = ppI * pC * H
+1 -1 -1 +41 -1 -1 ... +1 +1 -1
Y A /)
+1 -1 +1 +1 +1 +1 ... +1 -1 +1
Y Y A /)
+1 +1 +1 -1 -1 +1 ... +1 -1 +1
+1 +1 -1 +1 +1 +1 -1
“Ich pinf” =
+1 +1 -1 +1 -1 +1
-1 -1 +1 +1 -1 +1
-1 -1 +1 +1 +1 -1
+1 -1 +1 -1 -1 -1
-1 +1 +1 -1 -1 +1
b e~
-1 -1 +1 +1 -1 +1

“Ich bin”




EU Language Recognition
Identical hardware for both learning and inference

Train with 100 KB of text from 21 EU languages

Train text: “der emissionserloes soll fuer
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EU Language Recognition
Identical hardware for both learning and inference

Train with 100 KB of text from 21 EU languages Test with 1,000 sentences for each language

Train text: “der emissionserloes soll fuer Test sentence: “daher stimme ich gegen
den weiteren ausbau des qualitativ ...” anderungsantrag welcher”
Iltem Memory Iltem Memory
Letter HD vector Letter HD vector
10,000-d 10,000-d
Encoding: Encoding:
(*,+,p) operations (*,+,p) operations
Language HD vector Query HD vector
10,000-d 10,000-d
German ifi
— -1 -1 +1 +1 -1 .... -1 -1 +1 +1 -1 .... _»Identlfled
language
Associative Memory Associative Memory
-1 41 41 -1 +1 .... -1 41 41 -1 +1 ....
21x10,000 learned language patterns Search on learned language HD vectors




Generic HD Processing Unit




Generic HD Processing Unit

Inputs
|

LD Space Preprocessing/ Part of preprocessing can be eliminated
Transformations

HD vectors ! ! d
HD vectors ! ! d

HD Space




Generic HD Processing Unit

Inputs
|

LD Space Preprocessing/ Part of preprocessing can be eliminated
Transformations

Maps input vectors into d-dimensional (d=10,000)
pseudo-orthogonal random vectors

Nanodevice opportunity to exploit process
randomness and utilize variability

Seed Generation

HD vectors ! ! d
HD vectors ! ! d

HD Space




Generic HD Processing Unit

Inputs
|

LD Space Preprocessing/ Part of preprocessing can be eliminated
Transformations

Maps input vectors into d-dimensional (d=10,000)
pseudo-orthogonal random vectors

Nanodevice opportunity to exploit process
randomness and utilize variability

Seed Generation

HD vectors ! ! d

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i HD Encoder
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

HD Space : : - .
Encodes all input information into single HD vector

using simple local operators (*, +, p)

HD vectors ! ! d




LD Space

HD Space

Generic HD Processing Unit

Inputs

l

Preprocessing/
Transformations

Seed Generation

HD vectors ! ! d
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i HD Encoder
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HD vectors ! ! d

Associative Memory

Outcomes

Part of preprocessing can be eliminated

Maps input vectors into d-dimensional (d=10,000)
pseudo-orthogonal random vectors

Nanodevice opportunity to exploit process
randomness and utilize variability

Encodes all input information into single HD vector
using simple local operators (*, +, p)

Finds closest match in trained data
Can be continuously updated
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Many variants of same ...

Spatial
U ngram|t] B
EMG (Label[t]) += ngram([t]
OSSR, PIaNt e
Encoder Associative Memory (AM) §ath Flectrode p
——1% £1™{ Encong | [ =)
_"' ‘%::: N 1 GV (Label=5) S
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Actuation: argmax cosine-similarity Measurement:
change N N cosine similarity
Applications #l #C HD Baseline
Language identification [ISLPED’16] 1 21 96.7% 97.9%
Text categorization [DATE’16] 1 8 94.2%  86.4%
Speech recognition [ICRC’17] 1 26 953% 93.6%
EMG gesture recognition [ICRC’16] 4 5 97.8% 89.7%
Flexible EMG [ISCAS’18] 64 5 96.6%  88.9%
EEG brain-machine interface [BICT’17] 64 2 74.5%  69.5% 13
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Language identification [ISLPED’16] 1 21 96.7% 97.9%
Text categorization [DATE’16] 1 8 94.2%  86.4%

| Speech recognition [ICRC’'17] 1 26 953% 93.6%
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Many variants of same ...
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Applications #l #C HD Baseline Embedded Accelerator
Language identification [ISLPED’16] 1 21 96.7% 97.9% (28nm, 1.5mm?, 2mW)
Text categorization [DATE’16] 1 8 942% 86.4% [DAC’18]
Speech recognition [ICRC’17] 1 26 953% 93.6% v' 256 channels: 10 ms real-
EMG gesture recognition [ICRC’16] 4 5 97.8%  89.7% time constraints
Flexible EMG [ISCAS’18] 64 5 96.6%  88.9% v' 10x lower energy than
EEG brain-machine interface [BICT'17] 64 2 __74.5% _69.5% _| ARM Cortex-M4 13




HD Learns 3x Faster

EMG (8 gel-based electrodes)
SVM needs 3.2X more trials [ICRC’16]
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EMG (8 gel-based electrodes)
SVM needs 3.2X more trials [ICRC’16]

EEG (64 electrodes)
Gaussian needs 3X more trials

and preprocessing [BICT’17]
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SVM needs 3.2X more trials [ICRC’16]
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HD is Extremely Robust Against Errors
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HD is Extremely Robust Against Errors

Accuracy (%)
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Robustness in low SNR:

Seed hypervectors with i.i.d. components

MAP operations are nearly i.i.d.-preserving

Holographic: a failure in a component is not “contagious”
HD algorithm is data-driven with (almost) no control flow

conditions
16



High Order Bits

Simple HD architectural templates to encode
analog input signals for various biosignal
applications

Fully scalable
ldentical hardware for leaning and inference
Fast learning under low SNR conditions

* Enabling online and continuous learning!
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