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system complex enough to be real landmark in the development of "pattern recognition”. The basic structure
is fixed for the first phase of work extending to some point in July. Everyone is invited to contribute to the
discussion of the second phase. Sussman is coordinator of "Vision Project” meetings and should be
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Why Vision Is a Hard Problem
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Expanded Edition

Perceptrons

Marvin L. Minsky

Seymour A. Papert 1969







Boltzmann Machines
Learning Probabillity Distributions
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Visual Cortex

..............

_ - : ’s‘ ’it
Hubel and Wiesel, 1969



Simple Cell

<}

LR
x\;' Y
n.t -X

O 8

<

wr & i‘i;dév
<7t <
«7

7 4
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Felleman and Van Essen,1991



Geoffrey Hinton and Yann Le Cun



Deep Learning

a Encoding Decoding
Stimulus > Neurons » Behavior
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Spatial convolution
over image input
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Yamins and DiCarlo, 2016



Non-convex optimization

Objective function in deep networks is
Non-convex

e May be many local minima
e Plateaus: flat regions
e Saddle points

Q: Why does SGD seem to work so well
for optimizing these complex non-convex
functions??
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Saddle Points in High Dimensions
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January 5, 2017: “After humanity spent thousands of
years improving our tactics, computers tell us that
humans are completely wrong.”
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Retinal Ganglion Cells
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Kuffler, 1953
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BRAIN Initiative

Brain Research through Advancing
Innovative Neurotechnologies

April 2, 2013




Functional maps Anatomical structures

Pan-neuronal driver

Central Complex
Antennal Lobes
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The Deep Learning Revolution




