
Mike Davies
Director, Neuromorphic Computing Lab | Intel Labs

Acknowledgement to the entire Loihi team: Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya,
Yongqiang Cao, Sri Harsha Choday, Georgois Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, Yuyun
Liao, Chit-Kwan Lin, Andrew Lines, Ruokun Liu, Deepak Mathaikutty, Steve McCoy, Arnab Paul, Jon Tse,
Guru Venkataramanan, Yi-Hsin Weng, Andreas Wild, Yoonseok Yang, and Hong Wang

2

Examples:
- Online and lifelong learning

- Learning without cloud assistance

- Learning with sparse supervision

- Understanding spatiotemporal data

- Probabilistic inference and learning

- Sparse coding/optimization

- Nonlinear adaptive control

- Pattern matching with high occlusion

- SLAM and path planning

Motivation: The Case for Neuromorphic Computing

Emerging computing workloads demand
intelligent behaviors that we do not know

how to deliver efficiently with today’s
algorithms and computing architectures.

Problem Statement:

Robotics

HPC Systems

Neuroprosthetics Smart Glasses

Potential Future Product Applications

Solution Exploration Space

3

Competitive
Computer

Architectures

Spiking Neural Networks
Focus of our research

“Deep Learning” /
Artificial Neural Networks Research Goals:

• Broad class of brain-inspired
computation

• Efficient hardware
implementations

• Scalable from small to large
problems and systems

1
2

3

(We hope this is a non-empty class!)

4

The Engineering Perspective

Nature Silicon Ratio

Neuron density[1] 100k/mm2 5k/mm2 20x

Synaptic area[1] 0.001 um2 0.4 um2[2] 400x

Synaptic Op Energy ~2 fJ ~4 pJ 2000x

[1] Planar neocortex [2] ~5b SRAM

Max firing rate 100 Hz 1 GHz 10,000,000x

Synaptic error rate 75% 0% ∞

But…

Status today:

Nature Silicon

Autonomous self-assembly Fabricated manufacturing

Per-instance variability desired Variability causes brittle failures

Limited plasticity over lifetime Must support rapid reprogramming

Nondeterministic operation Deterministic operation desired

• Nature has come up with
something amazing. Let’s
copy it…

• Not so simple – very different
design regimes

• Yet objectives and constraints
are largely the same…

Energy minimization

Fast response time

Cheap to produce

Need to understand and apply the basic
principles, adapting for differences

MEM

M
E

M

C
P

U

M
E

M

C
P

U

M
E

M

C
P

U

C
P

U
C

P
U

C
P

U
5

Are Spiking Architectures Efficient?

01 01
01

01
01 01 01

01

01

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

x MUL

MUL

DECODE

T1

R
E
G

FETCH

𝑇1 𝑇2 𝑇3 𝑇4+

𝑇𝑋

1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0

0
0
1
1
0
0
1
0
1
0
0
1
0
0
1
1

6

One Compelling Example: LASSO Sparse Coding

LASSO Optimization Using the Spiking Locally
Competitive Algorithm

N
o

rm
a

li
ze

d
 o

b
je

ct
iv

e

both S-LCA and FISTA running on a Xeon

Neuromorphic algorithm rapidly
finds a near-optimal solution

zi zj….

𝑥1 𝑥2

𝒅𝒊 ⋅ 𝒙

min
𝑧

1

2
𝑥 − 𝐷𝑧 2

2 + 𝜆 𝑧 1

Problem

Implementation

Input Sparse
regularization

Reconstruction

𝑥

𝑧

Tang et al, arxiv: 1705:05475

𝐷 =

- 𝒅𝑖
𝑇 ⋅ 𝒅𝑗 𝑧𝑗

Inhibition

Excitation

7

Spiking LCA dynamics on a Loihi predecessor

LASSO Objective Over Time

Original Reconstruction Spikes

Much faster
convergence on a

neuromorphic
architecture

Intense but very
brief period of
competition

8

What this gives us… a baseline SNN architecture

Z-1

+

Z-1

+

Neuron Model (IF)

×
1-Du

𝑇1 𝑇2 𝑇3 𝑇4+ ∫ 𝑇5

Local Synaptic
Routing

Synaptic
Accumulation

Output Axon
Routing

2D Mesh
Packetized spikes

High fanout required
Low overhead synchronization

9

But how to scale to large LCA problems?

LCA is an all-to-all network…

z ….

𝑥3 𝑥4

z ….

𝑥5 𝑥6

z ….

𝑥1 𝑥2

Just 1000 feature neurons requires 10002 = 1M synapses

10

Answer: Patch-based Connectivity Reuse

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

Analogous to the “convolution” in ConvNets

Conventional 1D convolution example w/ Lateral inhibition

Generalized Hierarchical
Connectivity Example

* Best conventional LASSO solver (LARS also evaluated)
** Iso-process, roughly iso-area (6-10mm2)

PTPX-based measurements

11

Sparse Coding Results: N1 vs Atom CPU

0.01

0.1

1

10

100

1000

10000

100 1000 10000 100000

Ti
m

e
(m

s)

Time to Solution Comparison

0.01

0.1

1

10

100

1000

100 1000 10000 100000

En
er

gy
 (

m
J)

Number of Unknowns

Energy to Solution Comparison

0.01

0.1

1

10

100

1000

10000

100 1000 10000 100000

A
to

m
:N

1
 E

D
P

 R
at

io

N1 Advantage in Energy-Delay-Product

Comparison of sparse coding on N1 versus the FISTA* LASSO
solver on an Atom CPU**

>5000x better48x speed-up

118x lower

12

Neuromorphic Core Architecture

Discrete time LIF neuron model (CUBA)

Multi-compartment dendritic trees
up to 1K compartments

Intrinsic excitability homeostasis

Shared output routing table
4K axon routes

Axon delays

Refractory delays (+ random)

All synaptic connections pooled
128KB shared memory

Sparse, dense, and hierarchical
Synaptic mapping representations

Synaptic delays

Synaptic eligibility traces

Flexible 3-tuple synaptic variables
(1-9b weight, 0-6b delay, 0-8b tag)

Graded “reward spikes”

Flexible synaptic plasticity with

microcode-programmable rules

Sum-of-products rule semantics
Plasticity rules target any synaptic variable

Filtered spike train traces

Random noise sources

13

Basic Core Operation (Non-Learning)

SYNAPSE DENDRITE

T+1 T+2 T+3 TT+4

(Wi,Di)

AxonID

WeightSum idx
CFG[idx] STATE[idx]

AxonIDj

AxonIDj+1

Input spike routing

Tables (very complex)

Output spike routing

tables (simpler)

Synaptic delay handling

(Time multiplexing illustrated unrolled in space)

Neuron model

14

Learning with Synaptic Plasticity

• Local learning rules – essential property for
efficient scalability
Compatible with biological plausibility

• Should be derived by optimizing an emergent
statistical objective
Too much directionless experimentation otherwise

• Plasticity on wide range of time scales is needed
Delayed reward/punishment responses, eligibility
traces

Wx,y

x y

z

𝐸 = 𝑜 − 𝑠

o

Supervision
signal

Learning rules for weight Wx,y

may only access presynaptic
state x and postsynaptic state y

However reward spikes may be
used to distribute graded
reward/punishment values to a
particular set of axon fanouts

15

Trace-Based Programmable Learning

x1(t)

y1(t)

x2(t)

y2(t)

τ=20

τ=20

τ=200

τ=200

𝑤′ = 𝑤 +

𝑖=1

𝑁𝑃

𝑆𝑖

𝑗=1

𝑛𝑖

(𝑉𝑖,𝑗 + 𝐶𝑖,𝑗)

w

Short time scale trace correlations
=> STDP regime

Long time scale traces respond
to correlations in activity rates

Weight, Delay, and Tag learning rules
programmed as sum-of-product equations

Variable Dependencies
X0, Y0, X1, Y1, X2, Y2,
Wgt, Delay, Tag, etc.

Synaptic Variables
Wgt, Delay, Tag
(variable precision)Traces are low precision (7-9b)

and may decay stochastically for
implementation efficiency

Presynaptic spike
‘X’ traces

Postsynaptic spike
‘Y’ traces

Trace: Exponentially
filtered spike train

Intel Confidential

16

Learning Rule Examples

Pairwise STDP:

𝑊(𝑡 + 1) = 𝑊(𝑡) − 𝐴−𝑥0 𝑡 𝑦1 𝑡 + 𝐴+𝑥1(𝑡)𝑦0(𝑡)

Triplet STDP with heterosynaptic decay:

𝑊(𝑡 + 1) = 𝑊(𝑡) − 𝐴−𝑥0 𝑡 𝑦1 𝑡 + 𝐴+𝑥1 𝑡 𝑦0 𝑡 𝑦2 𝑡 − 𝐵 ⋅ 𝑊(𝑡) ⋅ 𝑦3(𝑡)

Delay STDP:

𝐷(𝑡 + 1) = 𝐷(𝑡) − 𝐴−𝑥0 𝑡 (127 − 𝑦1 𝑡) + 𝐴+(127 − 𝑥1 𝑡)𝑦0(𝑡)

17

Two-variable Learning Rule Examples

Distal Reward with Synaptic Tags:

𝑇 𝑡 + 1 = 𝑇 𝑡 − 𝐴−𝑥0 𝑡 𝑦1 𝑡 + 𝐴+𝑥1 𝑡 𝑦0 𝑡 − 𝐵 ⋅ 𝑇(𝑡)

𝑊(𝑡 + 1) = 𝑊(𝑡) + 𝐶 ⋅ 𝑟1(𝑡) ⋅ 𝑇(𝑡)

STDP with dynamic weight consolidation:

𝑊(𝑡 + 1) = 𝑊(𝑡) − 𝐴−𝑥0 𝑡 𝑦1 𝑡 + 𝐴+𝑥1 𝑡 𝑦0 𝑡 𝑦2 𝑡 − 𝐵1(𝑊 − 𝑇)𝑦3 𝑡 𝑦0 𝑡

𝑇(𝑡 + 1) = 𝑇(𝑡) + 1𝜏𝑐𝑜𝑛𝑠
𝑊 − 𝑇 − 𝐵2𝑇(𝑤𝜃 − 𝑇)(𝑤𝑚𝑎𝑥 − 𝑇)

Spatiotemporal
Attractors

Artificial Olfaction

18

Example Novel Algorithms Supported by Loihi

Constraint Satisfaction

Stochastic
Spiking
Networks

E

Sudoku

Graph Search

Path Planning

19

Our “Hello World” Application:
Supervised Learning for Object Recognition

Training Inference
Active energy per
image (total)

553 uJ 128 uJ

Neuromorphic energy 322 uJ 13 uJ
Processing time per
image

7.5 ms 1.8 ms

Chip power 74 mW 73 mW
Neuromorphic power 43 mW 7.4 mW

Resource Utilization Count Utilization

Neurons 20 0.02%
Synapses 38400 0.28%
SNN Cores 1 078%

S-STDP rule:

87% accuracy in 4 seconds

99.6% accuracy in 78 seconds

Performance on COIL20 data set

20

Up to the 10,000 foot view

The Nx System Framework
• Heterogeneous hierarchical parallel system
• Event-driven communication over channels
• Localized state
• Models describe emergent behavior

0110001

A

B

NN

𝒚∗ = argmin
𝑦𝑖≥0
𝐹(𝒙, 𝒚)

Modules w/ behavioral models

Snip
(Sequential neural
interfacing process)

Spiking neuron

SNN specification

A, B: Sequential processes conventionally coded and
run on conventional CPUs

NN: Neural network module
• Hierarchically specified
• Mathematical behavioral model
• May include conventional helper code (“snips”)

21

Mapping to the Physical Layer

Abstraction Layer

Physical Layer

“Atoms” of the
computational
hierarchy are mapped
to the system hardware
resources

(Static scheduling)

22

System Architecture Today

Arria10
Host

FPIO
(async serial)

Ethernet

Conventional sensors,
actuators, etc. for

application demos

“Super Host” CPU
• Owns the high-level application
• Compilation, visualization, debug, UI

Arria10 Host
• Manages an entire mesh of Loihi chips
• Glue logic to Loihi interfaces
• Interface to real world/time data
• Spike encoding/decoding in some cases

Loihi
• Event-driven I/O model
• Participates in barrier synchronization

Neuromorphic sensors
• DVS camera
• Silicon cochlea

PIO
(async parallel)

Loihi Loihi

Loihi Loihi

Loihi

Loihi

Loihi Loihi Loihi

Multi-chip scalability

Loihi

“Super Host” CPU

23

Current Software Development Kit
(work in progress)

x86

Sensors
Actuators

Display

Neuro Mesh

“Super
Host”
Xeon

x86 x86

• Barrier synchronization
• Spike handling
• Message passing
• Snip scheduling

Ethernet

Async PIO, FPIO

Execution Service Layer

Execution Interface

Mesh Runtime Layer

Bare register app
(C)

SSS

SSS

Bare metal app
(C)

SSS SSS Host ARM + Embedded x86 cores

• Single threaded app control
• Memory mapped I/O to Loihi
• External data I/O (sensors etc.)

Bare register app
(Python)

SNN API

• Per core programming
• Channel specification & setup
• Snip compiler

“Host”

GUI Tools
SNN app
(Python)

• Visualization, debug

• Network mapping to cores
• Data sourcing & monitoring

User Code Compilation / pass-throughS Snips

Nengo, Brian, PyNN, etc.

Third party framework
Interfacing

(TBD)

Nengo etc. app
(Python)

L
o

ih
i

S
u

p
e

r
H

o
st

24

Current Software Development Kit
(work in progress)

x86

Sensors
Actuators

Display

Neuro Mesh

“Super
Host”
Xeon

x86 x86

• Barrier synchronization
• Spike handling
• Message passing
• Snip scheduling

Ethernet

Async PIO, FPIO

Execution Service Layer

Execution Interface

Mesh Runtime Layer

Bare register app
(C)

SSS

SSS

Bare metal app
(C)

SSS SSS

• Single threaded app control
• Memory mapped I/O to Loihi
• External data I/O (sensors etc.)

Bare register app
(Python)

SNN API

• Per core programming
• Channel specification & setup
• Snip compiler

“Host”

GUI Tools
SNN app
(Python)

• Visualization, debug

• Network mapping to cores
• Data sourcing & monitoring

User Code Compilation / pass-throughS Snips

S
u

p
e

r
H

o
st

25

What’s the right top layer of the SDK?

Execution Service Layer

Execution Interface

Mesh Runtime Layer

Bare register
app (C)

SSS

SSS

Bare metal
app (C)

SSS SSS

Bare register
app (Python)

SNN API

SNN app
(Python)

A

B

NN

𝒚∗ = argmin
𝑦𝑖≥0
𝐹(𝒙, 𝒚)

“TBD” API

GUI Tools

Not TensorFlow / other DL frameworks
(wrong abstractions)

This is the unexplored frontier of
neuromorphic software research

26

Loihi Systems Outlook

Today
Wolf Mountain

Remote Access
4 Loihi/Board

Early Q2 2018
Nahuku

Remote Access
8 Loihi/Board

Late Q2 2018
Nahuku

1st availability
for collaborators
8-32 Loihi/Board

Late Q3 2018
Pohoiki Springs

Remote Access
Very large system

Future
Embedded

System
1 Loihi

Interfaces to standard
Arria10 evaluation
systems

27

Intel Neuromorphic Research Community

Neuromorphic SDK

Neuromorphic Algorithms

Application Systems/SW

Sensors
Actuators

Display

RV1: Theory
• Abstract and quantify features of

neuroscience to the context of
systems engineering

• Computational complexity frameworks

RV2: Algorithms
• Principled derivations of SNN

dynamics, features, and learning rules.

RV3: Applications
• Applications of Loihi and future Intel

neuromorphic silicon / FPGA designs
• Benchmarks and value analysis may

itself be research.

RV4: Programming Models
• New paradigms for conceptualizing

and specifying SNN/neuromorphic
algorithms

RV5: Sensors and Control
• Sparse, event-driven I/O for SNN

systems

Loihi / IA
HW Platform

We wish to engage with collaborators in academic, government, industry research groups

INRC goals:
• Demonstrate value of Loihi vs conventional solutions
• Share code, results, algorithms
• Motivate improvements for future silicon iterations

What we offer to INRC collaborators
• Remote access to Loihi systems, SDK, SW
• Loaned Loihi systems and bare chips (limited)
• Opportunity for limited funding (RFP available late March)

28

Please Join Us! (at the right time)

You:
• Extensive experience with SNNs
• Extensive experience with other

neuromorphic HW platforms
Us:
• Highly bandwidth limited

2018 2019Today

You:
• Vision for SNN application/algorithm research
• Can articulate the promise/value of project
• Can benchmark the result
• Interested in neuromorphic SW development
Us:
• More systems & documentation
• Complete SDK
• Scalable remote access system

You:
• Have a real-world problem not well solved now
• Prior SNN experience not necessary
Us:
• Mature, cross-framework SDK
Community:
• Critical mass, community forums, etc.
• Usable library of SDKs, tools, code, modules

Email inrc_interest@intel.com for more information

mailto:inrc_interest@intel.com

Email inrc_interest@intel.com for more information

mailto:inrc_interest@intel.com

Legal Information
This presentation contains the general insights and opinions of Intel Corporation (“Intel”). The information in this presentation is
provided for information only and is not to be relied upon for any other purpose than educational. Statements in this document
that refer to Intel’s plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve
a number of risks and uncertainties. A detailed discussion of the factors that could affect Intel’s results and plans is included in
Intel’s SEC filings, including the annual report on Form 10-K.

Any forecasts of goods and services needed for Intel’s operations are provided for discussion purposes only. Intel will have no
liability to make any purchase in connection with forecasts published in this document. Intel accepts no duty to update this
presentation based on more current information. Intel is not liable for any damages, direct or indirect, consequential or
otherwise, that may arise, directly or indirectly, from the use or misuse of the information in this presentation. Intel technologies’
features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn
more at intel.com, or from the OEM or retailer.

Copyright © 2018 Intel Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

