
Mike Davies
Director, Neuromorphic Computing Lab | Intel Labs

Acknowledgement to the entire Loihi team: Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, 
Yongqiang Cao, Sri Harsha Choday, Georgois Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, Yuyun 
Liao, Chit-Kwan Lin, Andrew Lines, Ruokun Liu, Deepak Mathaikutty, Steve McCoy, Arnab Paul, Jon Tse, 
Guru Venkataramanan, Yi-Hsin Weng, Andreas Wild, Yoonseok Yang, and Hong Wang



2

Examples:
- Online and lifelong learning 

- Learning without cloud assistance

- Learning with sparse supervision

- Understanding spatiotemporal data

- Probabilistic inference and learning

- Sparse coding/optimization

- Nonlinear adaptive control

- Pattern matching with high occlusion

- SLAM and path planning

Motivation: The Case for Neuromorphic Computing

Emerging computing workloads demand 
intelligent behaviors that we do not know 

how to deliver efficiently with today’s 
algorithms and computing architectures.

Problem Statement:

Robotics

HPC Systems

Neuroprosthetics Smart Glasses

Potential Future Product Applications



Solution Exploration Space
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Competitive
Computer

Architectures

Spiking Neural Networks
Focus of our research

“Deep Learning” / 
Artificial Neural Networks Research Goals:

• Broad class of brain-inspired 
computation

• Efficient hardware 
implementations

• Scalable from small to large 
problems and systems

1
2

3

(We hope this is a non-empty class!)
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The Engineering Perspective 

Nature Silicon Ratio

Neuron density[1] 100k/mm2 5k/mm2 20x

Synaptic area[1] 0.001 um2 0.4 um2[2] 400x

Synaptic Op Energy ~2 fJ ~4 pJ 2000x

[1] Planar neocortex   [2] ~5b SRAM

Max firing rate 100 Hz 1 GHz 10,000,000x

Synaptic error rate 75% 0% ∞

But…

Status today:

Nature Silicon

Autonomous self-assembly Fabricated manufacturing

Per-instance variability desired Variability causes brittle failures

Limited plasticity over lifetime Must support rapid reprogramming

Nondeterministic operation Deterministic operation desired

• Nature has come up with 
something amazing.  Let’s 
copy it…

• Not so simple – very different 
design regimes

• Yet objectives and constraints 
are largely the same…

Energy minimization

Fast response time

Cheap to produce

Need to understand and apply the basic 
principles, adapting for differences
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Are Spiking Architectures Efficient?
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One Compelling Example: LASSO Sparse Coding

LASSO Optimization Using the Spiking Locally 
Competitive Algorithm
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both S-LCA and FISTA running on a Xeon

Neuromorphic algorithm rapidly 
finds a near-optimal solution

zi zj….

𝑥1 𝑥2

𝒅𝒊 ⋅ 𝒙

min
𝑧

1

2
𝑥 − 𝐷𝑧 2

2 + 𝜆 𝑧 1

Problem

Implementation

Input Sparse 
regularization

Reconstruction

𝑥

𝑧

Tang et al, arxiv: 1705:05475

𝐷 =

- 𝒅𝑖
𝑇 ⋅ 𝒅𝑗 𝑧𝑗

Inhibition

Excitation
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Spiking LCA dynamics on a Loihi predecessor

LASSO Objective Over Time

Original Reconstruction Spikes

Much faster 
convergence on a 

neuromorphic 
architecture

Intense but very 
brief period of 
competition
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What this gives us… a baseline SNN architecture

Z-1

+

Z-1

+

Neuron Model (IF)

×
1-Du

𝑇1 𝑇2 𝑇3 𝑇4+ ∫ 𝑇5

Local Synaptic
Routing

Synaptic
Accumulation

Output Axon
Routing

2D Mesh
Packetized spikes

High fanout required
Low overhead synchronization
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But how to scale to large LCA problems?

LCA is an all-to-all network…

z ….

𝑥3 𝑥4

z ….

𝑥5 𝑥6

z ….

𝑥1 𝑥2

Just 1000 feature neurons requires 10002 = 1M synapses
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Answer: Patch-based Connectivity Reuse

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

Analogous to the “convolution” in ConvNets

Conventional 1D convolution example w/ Lateral inhibition

Generalized Hierarchical 
Connectivity Example



*  Best conventional LASSO solver (LARS also evaluated)
** Iso-process, roughly iso-area (6-10mm2)

PTPX-based measurements
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Sparse Coding Results: N1 vs Atom CPU
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N1 Advantage in Energy-Delay-Product

Comparison of sparse coding on N1 versus the FISTA* LASSO 
solver on an Atom CPU**

>5000x better48x speed-up

118x lower
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Neuromorphic Core Architecture

Discrete time LIF neuron model (CUBA)

Multi-compartment dendritic trees
up to 1K compartments

Intrinsic excitability homeostasis

Shared output routing table
4K axon routes

Axon delays

Refractory delays (+ random)

All synaptic connections pooled
128KB shared memory

Sparse, dense, and hierarchical
Synaptic mapping representations 

Synaptic delays

Synaptic eligibility traces

Flexible 3-tuple synaptic variables
(1-9b weight, 0-6b delay, 0-8b tag)

Graded “reward spikes”

Flexible synaptic plasticity with

microcode-programmable rules

Sum-of-products rule semantics
Plasticity rules target any synaptic variable

Filtered spike train traces

Random noise sources
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Basic Core Operation (Non-Learning)

SYNAPSE DENDRITE

T+1 T+2 T+3 TT+4

(Wi,Di)

AxonID

WeightSum idx
CFG[idx] STATE[idx]

AxonIDj

AxonIDj+1

Input spike routing

Tables (very complex)

Output spike routing

tables (simpler)

Synaptic delay handling

(Time multiplexing illustrated unrolled in space)

Neuron model
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Learning with Synaptic Plasticity

• Local learning rules – essential property for 
efficient scalability
Compatible with biological plausibility

• Should be derived by optimizing an emergent 
statistical objective
Too much directionless experimentation otherwise

• Plasticity on wide range of time scales is needed
Delayed reward/punishment responses, eligibility 
traces

Wx,y

x y

z

𝐸 = 𝑜 − 𝑠

o

Supervision
signal

Learning rules for weight Wx,y

may only access presynaptic 
state x and postsynaptic state y

However reward spikes may be 
used to distribute graded 
reward/punishment values to a 
particular set of axon fanouts
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Trace-Based Programmable Learning

x1(t)

y1(t)

x2(t)

y2(t)

τ=20

τ=20

τ=200

τ=200

𝑤′ = 𝑤 + 

𝑖=1

𝑁𝑃

𝑆𝑖 

𝑗=1

𝑛𝑖

(𝑉𝑖,𝑗 + 𝐶𝑖,𝑗)

w

Short time scale trace correlations 
=> STDP regime

Long time scale traces respond 
to correlations in activity rates

Weight, Delay, and Tag learning rules 
programmed as sum-of-product equations

Variable Dependencies
X0, Y0, X1, Y1, X2, Y2,
Wgt, Delay, Tag, etc.

Synaptic Variables
Wgt, Delay, Tag
(variable precision)Traces are low precision (7-9b) 

and may decay stochastically for 
implementation efficiency

Presynaptic spike
‘X’ traces

Postsynaptic spike
‘Y’ traces

Trace: Exponentially 
filtered spike train

Intel Confidential
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Learning Rule Examples

Pairwise STDP:

𝑊(𝑡 + 1) = 𝑊(𝑡) − 𝐴−𝑥0 𝑡 𝑦1 𝑡 + 𝐴+𝑥1(𝑡)𝑦0(𝑡)

Triplet STDP with heterosynaptic decay:

𝑊(𝑡 + 1) = 𝑊(𝑡) − 𝐴−𝑥0 𝑡 𝑦1 𝑡 + 𝐴+𝑥1 𝑡 𝑦0 𝑡 𝑦2 𝑡 − 𝐵 ⋅ 𝑊(𝑡) ⋅ 𝑦3(𝑡)

Delay STDP:

𝐷(𝑡 + 1) = 𝐷(𝑡) − 𝐴−𝑥0 𝑡 (127 − 𝑦1 𝑡 ) + 𝐴+(127 − 𝑥1 𝑡 )𝑦0(𝑡)
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Two-variable Learning Rule Examples

Distal Reward with Synaptic Tags:

𝑇 𝑡 + 1 = 𝑇 𝑡 − 𝐴−𝑥0 𝑡 𝑦1 𝑡 + 𝐴+𝑥1 𝑡 𝑦0 𝑡 − 𝐵 ⋅ 𝑇(𝑡)

𝑊(𝑡 + 1) = 𝑊(𝑡) + 𝐶 ⋅ 𝑟1(𝑡) ⋅ 𝑇(𝑡)

STDP with dynamic weight consolidation:

𝑊(𝑡 + 1) = 𝑊(𝑡) − 𝐴−𝑥0 𝑡 𝑦1 𝑡 + 𝐴+𝑥1 𝑡 𝑦0 𝑡 𝑦2 𝑡 − 𝐵1(𝑊 − 𝑇)𝑦3 𝑡 𝑦0 𝑡

𝑇(𝑡 + 1) = 𝑇(𝑡) + 1𝜏𝑐𝑜𝑛𝑠
𝑊 − 𝑇 − 𝐵2𝑇(𝑤𝜃 − 𝑇)(𝑤𝑚𝑎𝑥 − 𝑇)



Spatiotemporal 
Attractors

Artificial Olfaction
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Example Novel Algorithms Supported by Loihi

Constraint Satisfaction

Stochastic 
Spiking 
Networks

E

Sudoku

Graph Search

Path Planning



19

Our “Hello World” Application:
Supervised Learning for Object Recognition

Training Inference
Active energy per 
image (total)

553 uJ 128 uJ

Neuromorphic energy 322 uJ 13 uJ
Processing time per 
image

7.5 ms 1.8 ms

Chip power 74 mW 73 mW
Neuromorphic power 43 mW 7.4 mW

Resource Utilization Count Utilization

Neurons 20 0.02%
Synapses 38400 0.28%
SNN Cores 1 078%

S-STDP rule:

87% accuracy in 4 seconds

99.6% accuracy in 78 seconds

Performance on COIL20 data set
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Up to the 10,000 foot view

The Nx System Framework
• Heterogeneous hierarchical parallel system
• Event-driven communication over channels
• Localized state
• Models describe emergent behavior

0110001

A

B

NN

𝒚∗ = argmin
𝑦𝑖≥0
𝐹(𝒙, 𝒚)

Modules w/ behavioral models

Snip
(Sequential neural
interfacing process)

Spiking neuron

SNN specification

A, B: Sequential processes conventionally coded and
run on conventional CPUs

NN: Neural network module
• Hierarchically specified
• Mathematical behavioral model
• May include conventional helper code (“snips”)
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Mapping to the Physical Layer

Abstraction Layer

Physical Layer

“Atoms” of the 
computational 
hierarchy are mapped 
to the system hardware 
resources 

(Static scheduling) 
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System Architecture Today

Arria10
Host

FPIO
(async serial)

Ethernet

Conventional sensors, 
actuators, etc. for 

application demos

“Super Host” CPU
• Owns the high-level application
• Compilation, visualization, debug, UI

Arria10 Host
• Manages an entire mesh of Loihi chips
• Glue logic to Loihi interfaces
• Interface to real world/time data
• Spike encoding/decoding in some cases

Loihi
• Event-driven I/O model
• Participates in barrier synchronization

Neuromorphic sensors
• DVS camera
• Silicon cochlea

PIO
(async parallel)

Loihi Loihi

Loihi Loihi

Loihi

Loihi

Loihi Loihi Loihi

Multi-chip scalability

Loihi

“Super Host” CPU
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Current Software Development Kit
(work in progress)

x86

Sensors
Actuators

Display

Neuro Mesh

“Super
Host”
Xeon

x86 x86

• Barrier synchronization
• Spike handling
• Message passing
• Snip scheduling

Ethernet

Async PIO, FPIO

Execution Service Layer

Execution Interface

Mesh Runtime Layer

Bare register app 
(C)

SSS

SSS

Bare metal app 
(C)

SSS SSS Host ARM + Embedded x86 cores

• Single threaded app control
• Memory mapped I/O to Loihi
• External data I/O (sensors etc.)

Bare register app 
(Python)

SNN API

• Per core programming
• Channel specification & setup
• Snip compiler

“Host”

GUI Tools
SNN app 
(Python)

• Visualization, debug

• Network mapping to cores
• Data sourcing & monitoring

User Code Compilation / pass-throughS Snips

Nengo, Brian, PyNN, etc.

Third party framework
Interfacing

(TBD)

Nengo etc. app 
(Python)

L
o

ih
i

S
u

p
e

r 
H

o
st
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Current Software Development Kit
(work in progress)

x86

Sensors
Actuators

Display

Neuro Mesh

“Super
Host”
Xeon

x86 x86

• Barrier synchronization
• Spike handling
• Message passing
• Snip scheduling

Ethernet

Async PIO, FPIO

Execution Service Layer

Execution Interface

Mesh Runtime Layer

Bare register app 
(C)

SSS

SSS

Bare metal app 
(C)

SSS SSS

• Single threaded app control
• Memory mapped I/O to Loihi
• External data I/O (sensors etc.)

Bare register app 
(Python)

SNN API

• Per core programming
• Channel specification & setup
• Snip compiler

“Host”

GUI Tools
SNN app 
(Python)

• Visualization, debug

• Network mapping to cores
• Data sourcing & monitoring

User Code Compilation / pass-throughS Snips

S
u
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e

r 
H
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st
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What’s the right top layer of the SDK? 

Execution Service Layer

Execution Interface

Mesh Runtime Layer

Bare register 
app (C)

SSS

SSS

Bare metal 
app (C)

SSS SSS

Bare register 
app (Python)

SNN API

SNN app 
(Python)

A

B

NN

𝒚∗ = argmin
𝑦𝑖≥0
𝐹(𝒙, 𝒚)

“TBD” API

GUI Tools

Not TensorFlow / other DL frameworks
(wrong abstractions)

This is the unexplored frontier of 
neuromorphic software research
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Loihi Systems Outlook

Today
Wolf Mountain 

Remote Access
4 Loihi/Board

Early Q2 2018
Nahuku

Remote Access
8 Loihi/Board

Late Q2 2018
Nahuku

1st availability 
for collaborators
8-32 Loihi/Board

Late Q3 2018
Pohoiki Springs 

Remote Access
Very large system

Future
Embedded 

System
1 Loihi

Interfaces to standard
Arria10 evaluation
systems
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Intel Neuromorphic Research Community

Neuromorphic SDK

Neuromorphic Algorithms

Application Systems/SW

Sensors
Actuators

Display

RV1: Theory
• Abstract and quantify features of 

neuroscience to the context of 
systems engineering

• Computational complexity frameworks

RV2: Algorithms
• Principled derivations of SNN 

dynamics, features, and learning rules.

RV3: Applications
• Applications of Loihi and future Intel 

neuromorphic silicon / FPGA designs
• Benchmarks and value analysis may 

itself be research.

RV4: Programming Models
• New paradigms for conceptualizing 

and specifying SNN/neuromorphic 
algorithms

RV5: Sensors and Control
• Sparse, event-driven I/O for SNN 

systems

Loihi / IA
HW Platform

We wish to engage with collaborators in academic, government, industry research groups

INRC goals:
• Demonstrate value of Loihi vs conventional solutions
• Share code, results, algorithms
• Motivate improvements for future silicon iterations

What we offer to INRC collaborators
• Remote access to Loihi systems, SDK, SW
• Loaned Loihi systems and bare chips (limited)
• Opportunity for limited funding (RFP available late March)
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Please Join Us! (at the right time)

You:
• Extensive experience with SNNs
• Extensive experience with other 

neuromorphic HW platforms
Us:
• Highly bandwidth limited

2018 2019Today

You: 
• Vision for SNN application/algorithm research
• Can articulate the promise/value of project
• Can benchmark the result
• Interested in neuromorphic SW development
Us:
• More systems & documentation
• Complete SDK
• Scalable remote access system

You:
• Have a real-world problem not well solved now
• Prior SNN experience not necessary
Us:
• Mature, cross-framework SDK
Community:
• Critical mass, community forums, etc.
• Usable library of SDKs, tools, code, modules

Email inrc_interest@intel.com for more information

mailto:inrc_interest@intel.com


Email inrc_interest@intel.com for more information

mailto:inrc_interest@intel.com
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