A Pulse-Gated Mechanism for Synaptic Copy Between Neural Circuits

AND AND A THE POSSION AT THE POSSION AT

NICE 2018, INTEL HILLSBORO

Peking University Beijing, China

Louis Tao

Spencer Mathews, David Warland, Zhuo Wang, Zhuocheng Xiao, Jiwei Zhang, Yuxiu Shao, Cong Wang, Shubhankar Patankar

Motivation

THE CASE OF H.M. (HENRY MOLAISON, AND MANY OTHERS) TELLS US THAT SHORT-TERM MEMORIES ARE FORMED IN THE HIPPOCAMPUS, BUT STORED, FOR THE LONG-TERM, ELSEWHERE.

EVIDENCE SHOWS THAT THALAMIC SPINDLES, HIPPOCAMPAL RIPPLES AND CORTICAL SLOW OSCILLATIONS ACT LIKE A COMMUNICATION CHANNEL THAT FACILITATES MEMORY CONSOLIDATION.

CLEARLY, IN A NEUROMORPHIC CIRCUIT, WE MIGHT ALSO WANT TO COPY SYNAPSES FROM ONE PLACE TO ANOTHER.

Outline

SYNFIRE-GATED SYNFIRE CHAINS
SYNFIRE-GATED SYNFIRE CHAINS FOR GRADED INFORMATION PROPAGATION
HOW TO COMPUTE WITH SGSCS
LEARNING

• TRANSFERRING SYNAPSES

Synfire chains

SYNFIRE CHAIN

ABELES 1982

BRIANSIMULATOR.ORG

Synfire chains

ORIGINAL HOPE: TO PROPAGATE GRADED INFORMATION WITH SYNFIRE CHAINS

- CAN'T PROPAGATE GRADED INFORMATION THIS WAY

Synfire-gated synfire chains

FEED-FORWARD CHAIN OF NEURONS

PRECISE TEMPORAL SEQUENCE OF GATING PULSES

Synfire-gated synfire chains

a

MECHANISM: USE NEURAL POPULATIONS IN A CONVENTIONAL SYNFIRE CHAIN (I.E. ONE THAT APPROACHES AN ATTRACTOR) AS A PULSE GENERATOR TO PUSH SECONDARY POPULATIONS ABOVE THRESHOLD

WANG, SORNBORGER, TAO PLOS COMP BIO (2016)

HERE S. , PERSON IN THE WAY AND A HERE WAY AND A HERE A

Current, Graded Synfire Chain

EXX PR

SGSC: A mean field model

SORNBORGER, WANG, TAO, JCNS (2015)

HERE S. PARKING "S 15 AD. IN HERE W. MERICAN ROLLING ROLLIN

IMPLICATIONS:

• SEPARATION OF INFORMATION CONTROL - GATING PULSES INFORMATION CONTENT - GRADED FIRING RATES

• SGSCS MAY BE USED AS BUILDING BLOCKS FOR CONSTRUCTING NEURAL CIRCUITS

Computing with SGSCs

PULSE-GATED PROPAGATION BETWEEN VECTORS OF POPULATIONS

$$\tau \frac{d}{dt} I^d = -I^d + S \left[KI^u + p^u(t) \right]^+$$

FIXED CONNECTIVITY

DYNAMIC ROUTING

MODELLE STRAME STRAME WARDEN TO AND A MODELLE STRAME AND A STRAME S

LEADS TO FEED-FORWARD NEURAL CIRCUITS WITH ACTIVELY GATED LINEAR MAPS

 $\mathbf{I}^u(t) \stackrel{K}{\to} \mathbf{I}^d(t)$

SORNBORGER, WANG, TAO, JCNS (2015)

Learning a Process

A SIMPLE EXAMPLE: AN AUTOREGRESSIVE (AR) PROCESS

NEED NEURAL CIRCUITS TO
ESTIMATE COVARIANCE MATRIX
ESTIMATE PROCESS COEFFICIENTS FROM COVARIANCE
PREDICT FUTURE PROCESS VALUES

Learning a Process

SHAO, SORNBORGER, TAO, 50th Asilomar Conference (2016)

Gradient Descent/PMPY

$$\mathbf{p}_{n+1}' = \mathbf{p}_n' + \frac{\Delta t}{\tau} Q_1 \Gamma' \left(\boldsymbol{\gamma}' - Q_1 \Gamma' \mathbf{p}_n' \right)$$

HIGH & REALING BURNERS AND A WARRANT MERINAL RELATED TO AND A MARKED AND A MARKED

SHAO, SORNBORGER, TAO, 50th Asilomar Conference (2016)

"BURN IN" OF PROCESS COEFFICIENTS WITH HEBBIAN SYNAPSES

HISTORY AND THE REPORT IN FORTH THE REPORT OF THE REPORT OF THE PARTY AND THE REPORT OF THE PARTY AND THE REPORT OF THE PARTY AND THE PARTY AN

SHAO, SORNBORGER, TAO, 50th Asilomar Conference (2016)

Covariance Matrix Elements

AR Process Coefficients

Synaptic Copy

Alter and a second and a second

WE WILL USE ESSENTIALLY THE SAME MECHANISMS THAT WE USED TO LEARN AN AR PROCESS IN THE SYNAPTIC COPY CIRCUIT, WITH ONE ADDITION.

Synaptic Copy

PULSE SEQUENCE TO COPY SYNAPTIC VALUES FROM ONE NEURAL REGION TO ANOTHER

GENERATE TRANSFORMS OF EUCLIDEAN VECTORS AND COPY TO EITHER SIDE OF NEW HEBBIAN SYNAPSES

EFFECTIVELY A GREEN'S FUNCTION TECHNIQUE

Manager and Ander State and An

Conclusions

• USING PULSE-GATING TO PRECISELY CONTROL INFORMATION PROPAGATION, WE HAVE IMPLEMENTED A CIRCUIT CAPABLE OF FIRST LEARNING A STOCHASTIC PROCESS, THEN TRANSFERRING THE LEARNED SYNAPSES TO A SECONDARY CIRCUIT.

• THE TRANSFER CIRCUIT MAKES USE OF NESTED OSCILLATIONS AND OPERATES INDEPENDENTLY OF THE PROCESS USED TO LEARN THE INFORMATION THAT IS TRANSFERRED, TWO CHARACTERISTICS OF SLEEP CONSOLIDATION OF MEMORY

Questions?

