Whetstone

An Accessible, Platforfindependent Method
for Training Spiking Deep Neural Networks for
Neuromorphic Processors
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Introduction

What Is missing for neuromorphic to go mainstream?

Neuromorphic hardware is
A Available
A Competitive
A Constantly improving
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Whetstone Overview ml

Whetstone provides a drepm mechanism for tailoring a |
DNN to a spiking hardware platform (or other binary
threshold activation platforms)

A Hardware platform agnostic

A Compatible with a wide variety of DNN topologies
A No added time or complexity cost at inference
A Simple neuron requirements: Integrate and fire
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Initial Activation

Final Activation

Whetstone Overview

The real challenge for deep learning on spiking is
threshold activation function.

Using Whetstone, activation functions converge tc
threshold activatiorduring training.
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Whetstone Overview

A Generally, gradient descent generates a sequence of weights
0 with the goal of

minimizing the error of "Q0 ® in predicting the ground truth

A We generalize this by replacing the activation function "Q
with a sequence "Qsuch that "\Q°  "Qwhere "Qis now the
threshold activation function.

A Now, the optimizer must

minimize the error of "Q(0 ) in predicting V.

A Since the convergence in neither inor & is uniform , this is a

mathematically dangerous idea
A However, with a little care and a few tricks, the method

reliably converges in many cases.




Whetstone Overview

When/ Where do wéaade e acivatibris®s

1) Bottom-up Sharpening (The
method)

A Begin sharpening at the bottom layer
A Wait until previous layer is fully sharpened
A Increases stability of convergence
2) Adaptive Sharpening Callback
A Hand-tuning sharpening rates is hard

A Instead, use loss as a guide for an adaptive
sharpener

A Adaptive sharpener implemented as a
callback automatically adjusts sharpening
based on loss thresholds

Original Model Example

Modified Model Example

model.add (Dense(256))

model.adds ! AOE OA @&hIRIbsp
model.add (Dense(10))

model.adds ! AOE OA &dfirhak R p &
B

model.fit (Xx,y )

e

~

model.add (Dense(256))

model.add ( Spiking_BRelu ())
model.add (Dense(10))

model.add ( Spiking_Brelu () )
Model.add ( Softmax_Decode(key) )

e

sharpener = AdaptiveSharpener ()
model.fit (x,y, callbacks =[sharpener]
é




PreliminaryResults
MNIST
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PreliminaryResults
Fashion MNIST
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PreliminaryResults
Cifar10
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PreliminaryResults
Cifar100
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Established

Advantage: We can build on existing deep learning technology. ‘
Software: |

AKeras ATensorflow ATheano A CUDA A Endl ess Py
Techniques:

A Dropout A Batch Norm A Adaptivl



Established

A Batch Normalization helps training stability and network performance

A Improvements across network sizes

A Sharpneningloss, particularly on first sharpening layer, is significantly less

A Atinference time, bias (threshold) and weights are modulated according to stats
collected during training



