Efficient Biosignal Processing with Brain-inspired High-dimensional Computing:

A Universal ExG Classifier

Abbas Rahimi, Pentti Kanerva, Luca Benini, Jan M. Rabaey

ETH Zurich and UC Berkeley
Brain-inspired High-dimensional Computing

[P. Kanerva, An Introduction to Computing in Distributed Representation with High-Dimensional Random Vectors, Cogn Comput’09]

- Emulation of cognition by computing with high-dimensional vectors as opposed to computing with numbers
- Information distributed in high-dimensional space
- Supports full algebra

Superb properties:
- General and scalable model of computing
- Well-defined set of arithmetic operations
- Fast and one-shot learning (no need of back-prop)
- Memory-centric with embarrassingly parallel operations
- Extremely robust against most failure mechanisms and noise
- Energy efficient
Brain-inspired High-dimensional Computing

[P. Kanerva, An Introduction to Computing in Distributed Representation with High-Dimensional Random Vectors, Cogn Comput’09]

• Emulation of cognition by computing with high-dimensional vectors as opposed to computing with numbers
• Information distributed in high-dimensional space
• Supports full algebra

Superb properties:
• General and scalable model of computing
• Well-defined set of arithmetic operations
• Fast and one-shot learning (no need of back-prop)
• Memory-centric with embarrassingly parallel operations
• Extremely robust against most failure mechanisms and noise
• Energy efficient
What Are HD Vectors?

It is all about data representation

1\text{st} \ 2\text{nd} \ 3\text{rd} \ 4\text{th} \ 10000\text{th}

\[-1 \ +1 \ -1 \ -1 \ \ldots \ \ldots \ \ldots \ \ldots \ +1\]
What Are HD Vectors?

It is all about data representation

$[\begin{array}{cccccc}
-1 & +1 & -1 & -1 & \ldots & +1 \\
\end{array}]$

High-dimensional
What Are HD Vectors?

It is all about data representation

\[[-1 \quad +1 \quad -1 \quad -1 \quad \ldots \ldots \ldots \ldots \quad +1] \]

1st 2nd 3rd 4th 10000th

High-dimensional Holographic Distributed
What Are HD Vectors?

It is all about data representation

$$[-1 \; +1 \; -1 \; -1 \; \ldots \ldots \ldots \ldots \; +1]$$

1st 2nd 3rd 4th 10000th

High-dimensional Holographic Distributed Pseudorandom with i.i.d. components
What Are HD Vectors?

It is all about data representation

\[
[\begin{array}{cccc}
-1 & +1 & -1 & -1 \\
\end{array} \ldots \begin{array}{c}
+1
\end{array}]
\]

High-dimensional \Uparrow \quad Holographic \Uparrow \quad Distributed \Uparrow \quad Pseudorandom with i.i.d. components

Combine and Compare
What Are HD Vectors?

It is all about data representation

\[\begin{bmatrix} -1 & +1 & -1 & -1 & \ldots & +1 \end{bmatrix} \]

1st 2nd 3rd 4th 10,000th

High-dimensional Holographic Distributed Pseudorandom with i.i.d. components

Combine and Compare

Approximate computation with fixed-size long random patterns that provides a novel look at data representations, associated operations, circuits, and architectures.
Mapping to HD Vectors

• Each letter (symbol) is represented by an HD vector chosen at random with 10,000–d:

\[
\begin{align*}
A &= [-1, +1, -1, -1, -1, +1, -1, -1, -1, \ldots] \\
B &= [+1, -1, +1, +1, +1, -1, +1, -1, -1, \ldots] \\
C &= [-1, -1, -1, +1, +1, -1, +1, -1, -1, \ldots] \\
D &= [-1, -1, -1, +1, +1, -1, +1, -1, -1, \ldots] \\
&\vdots \\
Z &= [-1, -1, +1, -1, +1, +1, +1, -1, -1, \ldots]
\end{align*}
\]

• Every letter HD vector is dissimilar to others: \(\langle A, B \rangle = 0\)
• This assignment is fixed throughout computation
HD Arithmetic

- Componentwise addition (+) is good for representing sets, since sum vector is similar to its constituent vectors:
 \[\langle A + B, A \rangle = 0.5 \]

- Componentwise multiplication (\(\ast\)) is good for binding, since product vector is dissimilar to its constituent vectors:
 \[\langle A \ast B, A \rangle = 0 \]

- Permutation (\(\rho\)) makes a dissimilar vector by rotating, it good for representing sequences:
 \[\langle A, \rho A \rangle = 0 \]

- \(\ast\) and \(\rho\) are invertible and preserve distance
Example: Computing Language Profile

How to encode “Ich bin”?
Example: Computing Language Profile

How to encode “Ich bin”?

\[I = +1 -1 -1 +1 -1 -1 \ldots +1 +1 -1 -1 \]

\[C = +1 -1 +1 +1 +1 +1 \ldots +1 -1 +1 -1 \]

\[H = +1 +1 +1 -1 -1 +1 \ldots +1 -1 +1 +1 \]
Example: Computing Language Profile

How to encode “Ich bin”?

Trigram encoding: “Ich” = $\rho \rho I \ast \rho C \ast H$

\[
\begin{align*}
I &= +1 -1 -1 +1 -1 -1 \ldots +1 +1 -1 -1 +1 -1 \\
C &= +1 -1 +1 +1 +1 +1 \ldots +1 -1 +1 -1 +1 \\
H &= +1 +1 +1 -1 -1 +1 \ldots +1 -1 +1 +1
\end{align*}
\]

“Ich” = +1 +1 -1 +1 +1 +1 -1 -1
Example: Computing Language Profile

How to encode “Ich bin”?

Trigram encoding: “Ich” = $ppI \ast pC \ast H$

\[I = +1 -1 -1 +1 -1 -1 \ldots +1 +1 -1 -1 +1 -1 \]

\[C = +1 -1 +1 +1 +1 +1 \ldots +1 -1 +1 -1 +1 \]

\[H = +1 +1 +1 -1 -1 +1 \ldots +1 -1 +1 +1 \]

“Ich” = +1 +1 -1 +1 \ldots \ldots +1 +1 -1 -1

Adding trigrams: “Ich bin” =
Example: Computing Language Profile

How to encode “Ich bin”?

Trigram encoding: “Ich” = $\rho \rho I \ast \rho C \ast H$

$I = +1 -1 -1 +1 -1 -1 \ldots +1 +1 -1 -1 +1 -1$

$C = +1 -1 +1 +1 +1 +1 \ldots +1 -1 +1 -1 +1$

$H = +1 +1 +1 -1 -1 +1 \ldots +1 -1 +1 +1$

“Ich” = +1 +1 -1 +1 +1 +1 -1 -1

Adding trigrams: “Ich bin” =

“Ich” = +1 +1 -1 +1 -1 +1

“ch” = -1 -1 +1 +1 -1 +1

“hb” = -1 -1 +1 +1 +1 -1

“bi” = +1 -1 +1 -1 -1 -1

“bin” = -1 +1 +1 -1 -1 +1
Example: Computing Language Profile

How to encode “Ich bin”?

Trigram encoding: “Ich” = $p p I \ast p C \ast H$

\[
\begin{align*}
I &= +1 -1 -1 +1 -1 -1 \ldots +1 +1 -1 -1 +1 -1 \\
C &= +1 -1 +1 +1 +1 \ldots +1 -1 +1 -1 +1 \\
H &= +1 +1 +1 -1 -1 +1 \ldots +1 -1 +1 +1
\end{align*}
\]

Adding trigrams: “Ich bin” =

\[
\begin{align*}
"Ich" &= +1 +1 -1 +1 \ldots \ldots +1 +1 -1 -1 -1 \\
"ch" &= -1 -1 +1 +1 -1 +1 \ldots \\
"h b" &= -1 -1 +1 +1 +1 -1 \ldots \\
"bi" &= +1 -1 +1 -1 -1 \ldots \\
"bin" &= -1 +1 +1 -1 -1 +1 \ldots \\
\end{align*}
\]

= -1 -1 +1 +1 -1 +1 \ldots

“Ich bin”
EU Language Recognition

Identical hardware for both learning and inference

Train with 100 KB of text from 21 EU languages

Train text: “der emissionserlöses soll fuer den weiteren ausbau des qualitativ ...”

![Diagram](image)

- **Item Memory**
 - Letter HD vector 10,000-d

- **Encoding**: $(\ast, +, \rho)$ operations

- **Language** HD vector 10,000-d
EU Language Recognition

Identical hardware for both learning and inference

Train with 100 KB of text from 21 EU languages

Train text: “der emissionserloes soll fuer den weiteren ausbau des qualitativ ...”

- Item Memory
 - Letter HD vector
 - 10,000-d

- Encoding: \((*,+,\rho)\) operations

- Language HD vector
 - 10,000-d

- German
 - \(-1\ -1\ +1\ +1\ -1\ ...

- Associative Memory
EU Language Recognition

Identical hardware for both learning and inference

Train with 100 KB of text from 21 EU languages

Train text: “der emissionserloes soll fuer den weiteren ausbau des qualitativ ...”

Item Memory

Letter HD vector

10,000-d

Encoding:

(\ast,+,\rho) operations

Language HD vector

10,000-d

German

\begin{align*}
-1 & -1 +1 +1 -1 & \\
-1 & +1 +1 -1 +1 & \\
\end{align*}

Associative Memory

21 \times 10,000 learned language patterns
EU Language Recognition

Identical hardware for both learning and inference

Train with 100 KB of text from 21 EU languages

Test with 1,000 sentences for each language

Train text: “der emissionserloes soll fuer den weiteren ausbau des qualitativ ...”

Test sentence: “daher stimme ich gegen anderungsantrag welcher”

Item Memory

- Letter HD vector 10,000-d
- Encoding: \((\ast, +, \rho)\) operations
- Language HD vector 10,000-d

German

- 21 \times 10,000 **learned** language patterns

Associative Memory

- -1 -1 +1 +1 -1
- -1 +1 +1 -1 +1

Item Memory

- Letter HD vector 10,000-d
- Encoding: \((\ast, +, \rho)\) operations
- Query HD vector 10,000-d

Associative Memory

- -1 -1 +1 +1 -1
- -1 +1 +1 -1 +1

Search on **learned** language HD vectors

Identified language
Generic HD Processing Unit

HD Space

HD vectors → d

HD vectors → d

HD vectors → d
Generic HD Processing Unit

Part of preprocessing can be eliminated
Generic HD Processing Unit

Maps input vectors into d-dimensional ($d \approx 10,000$) pseudo-orthogonal random vectors.

Nanodevice opportunity to exploit process randomness and utilize variability.

Part of preprocessing can be eliminated.

Seed Generation

LD Space

Preprocessing/Transformations

Inputs

HD Space

$Seed$ Generation

HD vectors

$Preprocessing/Transformations$

m

HD vectors

Part of preprocessing can be eliminated

Maps input vectors into d-dimensional ($d \approx 10,000$) pseudo-orthogonal random vectors.

Nanodevice opportunity to exploit process randomness and utilize variability.

Seed Generation

HD vectors

$Preprocessing/Transformations$

m

HD vectors

Part of preprocessing can be eliminated

Maps input vectors into d-dimensional ($d \approx 10,000$) pseudo-orthogonal random vectors.

Nanodevice opportunity to exploit process randomness and utilize variability.
Generic HD Processing Unit

Part of preprocessing can be eliminated

Maps input vectors into d-dimensional \((d\approx10,000)\) pseudo-orthogonal random vectors

Nanodevice opportunity to **exploit process randomness and utilize variability**

Encodes all input information into single HD vector using simple local operators \(\ast,+,\rho\)
Generic HD Processing Unit

- **Preprocessing/Transformations**: Maps input vectors into \(d \)-dimensional \((d \approx 10,000)\) pseudo-orthogonal random vectors.
- **Seed Generation**: Nanodevice opportunity to **exploit process randomness and utilize variability**.
- **HD Encoder**: Encodes all input information into single HD vector using simple local operators \((\ast, +, \rho)\).
- **Associative Memory**: Finds closest match in trained data. Can be continuously updated.

Part of preprocessing can be eliminated.
HD Processing for Gesture Recognition

Preprocessing

60 Hz Notch → Exp. filter → Quani. 21

CiM

iM

n-1

R[t]

\(\rho(R[t-1]) \)

\(\rho^{n-1}(R[t-n+1]) \)

EMG (Label[t]) += ngram[t]

Match

Out
HD Processing for Gesture Recognition

Mapping in HD space

EMG (Label[t]) += ngram[t]

Match

Out
HD Processing for Gesture Recognition

![Diagram of HD Processing for Gesture Recognition](image)

- **CH1**
 - Value: 60 Hz Notch
 - Name: 'CH1'

- **CH2**
 - Value: 60 Hz Notch
 - Name: 'CH2'

Temporal encoder
- \(R[t] \)
- \(\rho(R[t-1]) \)
- \(\rho^{n-1}(R[t-n+1]) \)

HD encoder
- \(n_{gram}[t] \)
- \(EMG (Label[t]) + n_{gram}[t] \)

Match

Out
HD Processing for Gesture Recognition

\[\text{EMG (Label[t])} = \text{ngram[t]} \]

Temporal encoder

\[R[t], \rho(R[t-1]), \ldots, \rho^{n-1}(R[t-n+1]) \]

\[\text{ngram[t]} \]

\[\text{EMG (Label[t])} + \text{ngram[t]} \]

\[\text{Match} \]

\[\text{Out} \]

CH1

\[\text{value} \quad \text{Exp. filter} \quad \text{Quani. 21} \quad \text{CiM} \quad \text{iM} \]

CH2

\[\text{value} \quad \text{Exp. filter} \quad \text{Quani. 21} \quad \text{CiM} \quad \text{iM} \]
Many variants of same ...

Applications

<table>
<thead>
<tr>
<th></th>
<th>#I</th>
<th>#C</th>
<th>HD</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language identification [ISLPED’16]</td>
<td>1</td>
<td>21</td>
<td>96.7%</td>
<td>97.9%</td>
</tr>
<tr>
<td>Text categorization [DATE’16]</td>
<td>1</td>
<td>8</td>
<td>94.2%</td>
<td>86.4%</td>
</tr>
<tr>
<td>Speech recognition [ICRC’17]</td>
<td>1</td>
<td>26</td>
<td>95.3%</td>
<td>93.6%</td>
</tr>
<tr>
<td>EMG gesture recognition [ICRC’17]</td>
<td>4</td>
<td>5</td>
<td>97.8%</td>
<td>89.7%</td>
</tr>
<tr>
<td>Flexible EMG [ISCAS’18]</td>
<td>64</td>
<td>5</td>
<td>96.6%</td>
<td>88.9%</td>
</tr>
<tr>
<td>EEG brain-machine interface [BICT’17]</td>
<td>64</td>
<td>2</td>
<td>74.5%</td>
<td>69.5%</td>
</tr>
</tbody>
</table>

Diagram:

- **Plant**
 - EMG Channels
 - Spatial Encoding
 - Temporal Encoding
 - Query GV
 - Associative Memory (AM)
 - Cosine

- **Controller**
 - Actuation: change N
 - Measurement: cosine similarity

- **Encoder**
 - 1st Electrode
 - Preprocessing
 - BPF
 - iM

- **Temporal Encoder**
 - p(R[t−1])
 - p^k−1(R[t−N+1])
 - EMG (Label[t]) += ngram[t]

- **Spatial Encoder**
 - Temporal Encoder
 - ngram[t]
 - EMG (Label[t]) += ngram[t]

- **Plant**
 - 64th Electrode
 - Preprocessing
 - BPF
 - iM

- **Controller**
 - Actuation: change N
 - Measurement: cosine similarity

- **Encoder**
 - 1st Electrode
 - Preprocessing
 - BPF
 - iM

- **Temporal Encoder**
 - p(R[t−1])
 - p^k−1(R[t−N+1])
 - EMG (Label[t]) += ngram[t]

- **Spatial Encoder**
 - Temporal Encoder
 - ngram[t]
 - EMG (Label[t]) += ngram[t]
Many variants of same ...

Applications	#I	#C	HD	Baseline
Language identification [ISLPED'16] | 1 | 21 | 96.7% | 97.9%
Text categorization [DATE'16] | 1 | 8 | 94.2% | 86.4%
Speech recognition [ICRC'17] | 1 | 26 | 95.3% | 93.6%
EMG gesture recognition [ICRC'16] | 4 | 5 | 97.8% | 89.7%
Flexible EMG [ISCAS'18] | 64 | 5 | 96.6% | 88.9%
EEG brain-machine interface [BICT'17] | 64 | 2 | 74.5% | 69.5%
Applications

<table>
<thead>
<tr>
<th></th>
<th>#I</th>
<th>#C</th>
<th>HD</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language identification</td>
<td>1</td>
<td>21</td>
<td>96.7%</td>
<td>97.9%</td>
</tr>
<tr>
<td>Text categorization</td>
<td>1</td>
<td>8</td>
<td>94.2%</td>
<td>86.4%</td>
</tr>
<tr>
<td>Speech recognition</td>
<td>1</td>
<td>26</td>
<td>95.3%</td>
<td>93.6%</td>
</tr>
<tr>
<td>EMG gesture recognition</td>
<td>4</td>
<td>5</td>
<td>97.8%</td>
<td>89.7%</td>
</tr>
<tr>
<td>Flexible EMG</td>
<td>64</td>
<td>5</td>
<td>96.6%</td>
<td>88.9%</td>
</tr>
<tr>
<td>EEG brain-machine interface</td>
<td>64</td>
<td>2</td>
<td>74.5%</td>
<td>69.5%</td>
</tr>
</tbody>
</table>
Applications

<table>
<thead>
<tr>
<th>Application</th>
<th>#I</th>
<th>#C</th>
<th>HD</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language identification [ISLPED’16]</td>
<td>1</td>
<td>21</td>
<td>96.7%</td>
<td>97.9%</td>
</tr>
<tr>
<td>Text categorization [DATE’16]</td>
<td>1</td>
<td>8</td>
<td>94.2%</td>
<td>86.4%</td>
</tr>
<tr>
<td>Speech recognition [ICRC’17]</td>
<td>1</td>
<td>26</td>
<td>95.3%</td>
<td>93.6%</td>
</tr>
<tr>
<td>EMG gesture recognition [ICRC’16]</td>
<td>4</td>
<td>5</td>
<td>97.8%</td>
<td>89.7%</td>
</tr>
<tr>
<td>Flexible EMG [ISCAS’18]</td>
<td>64</td>
<td>5</td>
<td>96.6%</td>
<td>88.9%</td>
</tr>
<tr>
<td>EEG brain-machine interface [BICT’17]</td>
<td>64</td>
<td>2</td>
<td>74.5%</td>
<td>69.5%</td>
</tr>
</tbody>
</table>
Many variants of same ...

<table>
<thead>
<tr>
<th>Applications</th>
<th>#I</th>
<th>#C</th>
<th>HD</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language identification [ISLPED’16]</td>
<td>1</td>
<td>21</td>
<td>96.7%</td>
<td>97.9%</td>
</tr>
<tr>
<td>Text categorization [DATE’16]</td>
<td>1</td>
<td>8</td>
<td>94.2%</td>
<td>86.4%</td>
</tr>
<tr>
<td>Speech recognition [ICRC’17]</td>
<td>1</td>
<td>26</td>
<td>95.3%</td>
<td>93.6%</td>
</tr>
<tr>
<td>EMG gesture recognition [ICRC’16]</td>
<td>4</td>
<td>5</td>
<td>97.8%</td>
<td>89.7%</td>
</tr>
<tr>
<td>Flexible EMG [ISCAS’18]</td>
<td>64</td>
<td>5</td>
<td>96.6%</td>
<td>88.9%</td>
</tr>
<tr>
<td>EEG brain-machine interface [BICT’17]</td>
<td>64</td>
<td>2</td>
<td>74.5%</td>
<td>69.5%</td>
</tr>
</tbody>
</table>

- 2× lower energy than SVM
- **Embedded Accelerator**
 (28nm, 1.5mm², 2mW)
 [DAC’18]
- 256 channels: 10 ms real-time constraints
- 10× lower energy than ARM Cortex-M4
HD Learns $3 \times$ Faster

EMG (8 gel-based electrodes)

SVM needs $3.2 \times$ more trials [ICRC’16]
HD Learns $3 \times$ Faster

EMG (8 gel-based electrodes)

SVM needs $3.2 \times$ more trials [ICRC’16]

EEG (64 electrodes)

Gaussian needs $3 \times$ more trials and preprocessing [BICT’17]
HD Learns $3 \times$ Faster

EMG (8 gel-based electrodes)
SVM needs $3.2 \times$ more trials [ICRC’16]

EEG (64 electrodes)
Gaussian needs $3 \times$ more trials and preprocessing [BICT’17]

Flexible high-density electrode array [ISCAS’18]

Train/Test 30 mins apart

One-shot: 89.2%
HD Learns $3 \times$ Faster

EMG (8 gel-based electrodes)

SVM needs $3.2 \times$ more trials [ICRC’16]

Flexible high-density electrode array [ISCAS’18]

EEG (64 electrodes)

Gaussian needs $3 \times$ more trials and preprocessing [BICT’17]

Train/Test 30 mins apart

One-shot: 89.2%

Train/Test 1 day apart

With repositioning: 82.0%

SVM: 51%
The True Opportunity for HD
3D Integration and Nanoscale Devices

Random HD vectors: ~ 10k bits

Letters/ signals/ features

Applications

Utilizing RRAM stochasticity

Pulse Amplitude (V)
Pulse Width (ns)
0.7 0.8 0.9 1.0 1.1
0% 25% 50% 75% 100%

011101010101...011101010100...
101100100101...101010011110...

of items
The True Opportunity for HD 3D Integration and Nanoscale Devices

Letters/ signals/ features

Applications

Representation
Utilizing RRAM stochasticity

Random HD vectors: ~ 10k bits

In-memory Processing
3D vertical RRAM for MAP operations [IEDM’16]
The True Opportunity for HD 3D Integration and Nanoscale Devices

Letters/ signals/ features

Applications

Random HD vectors: ~ 10k bits

Representation

Utilizing RRAM stochasticity

In-memory Processing

3D vertical RRAM for MAP operations [IEDM’16]

Learning/ Inference

Analog resistive associative memory [HPCA’17]
HD is Extremely Robust Against Errors

- **HD is Extremely Robust**
 - Against Errors

Graphs:
- **Left Graph:**
 - Title: Probability of failure for each memory cell
 - Y-axis: Accuracy (%)
 - X-axis: Probability of failure
 - Data points:
 - KNN
 - HD (10K)
 - Observations:
 - HD (10K) is significantly more robust than KNN
 - HD (10K) maintains higher accuracy at higher error probabilities

- **Right Graph:**
 - Title: Proportion of Hard Errors (%)
 - Y-axis: Accuracy (%)
 - X-axis: Proportion of Hard Errors (%)
 - Data points:
 - KNN
 - HD (2K)
 - HD (10K)
 - Observations:
 - HD (10K) significantly outperforms KNN and HD (2K)
 - HD (10K) retains high accuracy across a wide range of error proportions

Comparisons:
- **9x** improvement for HD (10K) compared to KNN
- **83x** improvement for HD (10K) compared to HD (2K)
HD is Extremely Robust Against Errors

Robustness in low SNR:
- Seed hypervectors with **i.i.d. components**
- MAP operations are nearly **i.i.d.-preserving**
- **Holographic**: a failure in a component is not “contagious”
- HD algorithm is **data-driven** with (almost) no control flow conditions
High Order Bits

• Simple HD architectural templates to encode analog input signals for various biosignal applications
• Fully scalable
• Identical hardware for leaning and inference
• Fast learning under low SNR conditions
 • Enabling online and continuous learning!
Relevant publications

• A. Rahimi, P. Kanerva, J. del R. Millan, J. M. Rabaey, “Hyperdimensional Computing for Noninvasive Brain-Computer Interfaces: Blind and One-Shot Classification of EEG Error-Related Potentials,” In 10th EAI International Conference on Bio-inspired Information and Communications Technologies (BICT), March 2017. [Best Paper] [PDF] [PPTX] [Artifact]

• A. Rahimi, S. Benatti, P. Kanerva, L. Benini, and J. M. Rabaey, “Hyperdimensional Biosignal Processing: A Case Study for EMG-based Hand Gesture Recognition,” In IEEE International Conference on Rebooting Computing (ICRC), 2016. [PDF] [PPTX] [Artifact] [Video]

• A. Rahimi, P. Kanerva, and J. M. Rabaey, “A Robust and Energy-Efficient Classifier Using Brain-Inspired Hyperdimensional Computing,” In ACM/IEEE International Symposium on Low-Power Electronics and Design (ISLPED), 2016. [PDF] [PPTX] [Artifact]

