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Motivation: The Case for Neuromorphic Computing

Problem Statement: Potential Future Product Applications

Emerging computing workloads demand

intelligent behaviors that we do not know
how to deliver efficiently KT ij h §j | ¢

algorithms and computing architectures.

Examples:
Online and lifelong learning
Learning without cloud assistance
Learning with sparse supervision
Understanding spatiotemporal data
Probabilistic inference and learning
Sparse coding/optimization
Nonlinear adaptive control
Pattern matching with high occlusion
SLAM and path planning

HPC Systems

=

Neuroprosthetlcs Smart Glasses




Solution Exploration Space

feAAj] dRAGITTTHR a
Artificial Neural Networks Research Goa|s:
ABroad class of brain -inspired
< < computation
S AEfficient hardware
SR : implementations
N 4 AScalable from small to large

problems and systems

Spiking Neural Networks
Focus of our research

Competitive
Computer

Architectures (We hope this is a non-empty class!)




The Engineering Perspective

A Nature has come up with Status today:

J] T HijATTH GI GLT T ¥ Nature Silicon Ratio
Gljk Ti, Neuron density [ 100k/mm 2 5k/mm 2 20x
Synaptic areall] 0.001um?2 0.4 um?2 400x

A Not so simple Yvery different

i i Synaptic Op Ener ~2 fJ ~4 pJ 2000
design regimes ynaptic Op Energy p X

[1] Planar neocortex [2] ~5b SRAM

A o . ¢Jij,
Yet objectives and constraints Max firing rate 100 Hz 1GHz  10,000,000x
GIH 1TGI AHHT k ijhH 1I3GI
Synaptic érror rate 75% 0% Ho

Energy minimization

Fast response time

Autonomous self -assembly Fabricated manufacturing
Cheap to produce
Per-instance variability desired Variability causes brittle failures

Need to understand and apply the basic slasticity over lifetime Must support rapid reprogramming
principles, adapting for differences rministic operation Deterministic operation desired




Are Spiking Architectures Efficient?

DECODH FETCH
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One Compelling Example: LASSO Sparse Coding

Problem LASSO Optimization Using the Spiking Locally

A N , Competitive Algorithm
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reconstruct image with
as few contributors as
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Neuromorphic algorithm rapidly

Tang et al, andv: 1705:05475 finds a near-optimal solution




Spiking LCA dynamics on a Loihi predecessor
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brief period of
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2D Mesh
Packetized spikes
High fanout required
Low overhead synchronization

Neuron Model (IF)




But how to scale to large LCA problems?

LCAisanaltto-GT1 7 T Hij K] 1T,

Just 1000 feature neurons requires 1000 2 = 1M synapses




Answer: Patch-based Connectivity Reuse

~

ij h FConvietsT § | T Jij T |

T

Feature
¢ o0 neurons

1-D data
inputs

TZ T2 T2 T2
Conventional 1D convolution example

w/ Lateral inhibition

Generalized Hierarchical
Connectivity Example




Sparse Coding Results: N1 vs Atom CPU

Time to Solution Comparison
10000 N1 Advantage in EnerdyelayProduct
1000 48x speed-up LA 2 10000 ' >5000x better
100 T 1000
\g 10 PR ot oV L 100
S e o 10
0.1 o é 1 e
0.01 e 0.1 =
100 1000 10000 100000 < Lol e
100 1000 10000 100000

Energy to Solution Comparison
1000 . Comparison of sparse coding on N1 versus the FISTA* LASSO

118x lower
g 1% ; solver on an Atom CPU**
o e )
Q 1 __,:;Q' ......... * Best conventional LASSO solver (LARS also evaluated) o atom [FISTA)
w 0.1 e ** |so-process, roughly iso-area (6-10mm 2) .
0.01 PTPX-based measurements
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Number of Unknowns
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Neuromorphic Core Architecture

All synaptic connections pooled Discrete time LIFneuron model (CUBA)
128K8 shared memory Multi -compartment dendritic trees
Sparse, dense, and hierarchical up to 1K compartments

Synaptic mapping representations Intrinsic excitability homeostasis

/

1 IN SYNAPSE DENDRITE AXON out .
Synaptic delays ——-= " Random noise sources

Synaptic eligibility traces ' i 0T

Flexible 3-tuple synaptic variables
(1-9b weight, 0-6b delay, 0-8b tag)/
Ci GgGHg 1 RN

Bl DENDRITE
ACCCUM
EIN META_STATE

Shared output routing table

7 : 4K axon routes
Flexible synaptic plasticity with Axon delays
microcode -programmable rules Filtered spike train traces Refractory delays (+ random)

\

Sum-of-products rule semantics . _ _
Plasticity rules target any synaptic variable
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Basic Core Operation (Non-Learning)

(Time multiplexing illustrated unrolled in space)
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g
~ug

:

a
> /| A

: / ’/ ! :\
,L“'i"":"] L WA WA WA eee L peights T |
—_— N : e
AxonlID | uJ/ i i AxonlD;
LA T+l T+2 T+3 T+4 T |

/ \ ) ‘
Y
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Tables (very complex) tables (simpler)
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Learning with Synaptic Plasticity

A Local learning rules Yessential property for y Supervision
efficient scalability sional
Compatible with biological plausibility %

A Should be derived by optimizing an emergent W o&
statistical objective
Too much directionless experimentation otherwise Learning ules for weight W,

A Plasticity on wide range of time scales is needed ;T;Z'Eleoxngn:cpc:sstz;r::taligag'sgfe y
Delayed reward/punishment responses, eligibility |
traces Used to distbute graded

reward/punishment values to a
particular set of axon fanouts
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Xq(t)
=20

y1(®)
=20

X,(t)
=200

Y»(t)
=200

Trace-Based Programmable Learning

Short time scale trace correlations
=> STDP regime /4,

Presynaptic spike
" Egee ij1 GGHY L
1 A/ Trace: Exponentially Postsynaptic spike

filtered spike train EGee i1 GGHW

Weight, Delay, and Tag learning rules
programmed as sum-of-product equations

‘ ‘ H llllll ‘ llllllllll “HH\HHH
/

Traces are low precision (7-9b)
and may decay stochastically for

implementation efficiency
Intel Confidential intel‘ . 15

Synaptic Variables
Wagt, Delay, Tag
(variable precision)

Variable Dependencies
Xos Yo, X1, Y1, X5, Y,
Wot, Delay, Tag, etc.

\« Long time scale traces respond
to correlations in activity rates




Learning Rule Examples

Pairwise STDP:
WO p WO O0wOw@ o0 wowo
Triplet STDP with heterosynaptic decay:
WO p WO 0 wOWNMWBM 0 wOwOMwO oO6tw o6tw o
Delay STDP:

OO0 p OO0 OwOpPpeXxwW(® 0 pcxw(O w o




Two-variable Learning Rule Examples

Distal Reward with Synaptic Tags:
O p) YO O w(@w® 06 w(Ow@ O6t"Yo

WO p WO Oti ot"Yod
STDP with dynamic weight consolidation:

WO pPp WO 0wOw0O 0 wOWwOwMd 0 w "Yw(Ow(d)

YO p YO — (W Y O0°YO YU Y




Example Novel Algorithms Supported by Loihi

Spatiotemporal Constraint Satisfaction Graph Search
Attractors

AN 5] Stochastic Spikes Initial Cluster
(HE 9 )| .
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Time

Artificial Olfaction Path Planning




EJ1 fEHTT] G]Ji11TgR Cj
Supervised Learning for Object Recognition

Performance on COIL20 data set

100

Input patterns Pre-processing 2-layer neural network o "B
Data base (e.g. COIL, MNIST)
ELCREZHSEE Supervisory 0
lﬁHElﬂﬂilﬂ signal 85
BBIIE IIIII

cP) 80

99.6% accuracy in 78 seconds

v 1
‘% 6 87% accuracy in 4 seconds
. w(p) 60 |

Scanline encoder
- Sdetects edges
along scanlines)

Test set accuracy (%)

_ Live images >
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Images (10%)

| Training | Inference

Input axons Active energy per 553 ud 128 ud
| HOST/Sensors [ HOST/Embedded x86 | Neuromorphic Core I image (total)

Neuromorphic energy 322 ud 13 ud

Resource Utilization Utilization Processing time per 75ms  1.8ms

Output neurons

Neurons 20 0.02% image
) Synapses 38400 0.28% Chip power 74 mW 73 mW
S-STDP rule: SNN Cores 1 078% Neuromorphic power 43 mW 7.4 mW

Wi j(t) = Wij(t = 1)+ 1 (ux - Si,cp) — Yiro) - Xj1




Up to the 10,000 foot view

The Nx System Framework

A Heterogeneous hierarchical parallel system
A Event-driven communication over channels
A Localized state

A Models describe emergent behavior

< AOC (b SNN specification Snip
(Sequential neural

interfacing process)

0110001

Spiking neuron

|

Modules w/ behavioral models
A, B: Sequential processes conventionally coded and
run on conventional CPUs
NN: Neural network module
A Hierarchically specified
A Mathematical behavioral model
AEGk TTVTGIJgH GJTTHTIiT|]TGT hHT|




Mapping to the Physical Layer

Abstraction Layer

fCij)] TR | h ijhl
computational

| hierarchy are mapped
to the system hardware
resources

o
Q O O Ogo 0o (Static scheduling)
Physical Layer m ——]

o)




System Arc

Conventional sensors,
actuators, etc. for
application demos

Ethernet

Neuromorphic sensors
A DVS camera
A Silicon cochlea

ArrialO
Host

(async serial)

(async parallel)

Multi -chip scalability

T

fFEJj A1 &) WijR Ceé
A Owns the high-level application
A Compilation, visualization, debug, Ul

Arrial0O Host
A Manages an entire mesh of Loihi chips
A Glue logic to Loihi interfaces
A Interface to real world/time data
A Spike encoding/decoding in some cases

Loihi
A Event-driven /0 model
A Participates in barrier synchronization
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