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Examples:
- Online and lifelong learning 

- Learning without cloud assistance

- Learning with sparse supervision

- Understanding spatiotemporal data

- Probabilistic inference and learning

- Sparse coding/optimization

- Nonlinear adaptive control

- Pattern matching with high occlusion

- SLAM and path planning

Motivation: The Case for Neuromorphic Computing

Emerging computing workloads demand 
intelligent behaviors that we do not know 

how to deliver efficiently ĶĨĳħ ĳĮģĠĸœĲ 
algorithms and computing architectures.

Problem Statement:

Robotics

HPC Systems

Neuroprosthetics Smart Glasses

Potential Future Product Applications



Solution Exploration Space
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Competitive
Computer

Architectures

Spiking Neural Networks
Focus of our research

ŕĉĤĤį đĤĠıĭĨĭĦŖ á 
Artificial Neural Networks Research Goals:

ÅBroad class of brain -inspired 
computation
ÅEfficient hardware 

implementations
ÅScalable from small to large 

problems and systems
1
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(We hope this is a non-empty class!)
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The Engineering Perspective 

Nature Silicon Ratio

Neuron density [1] 100k/mm 2 5k/mm 2 20x

Synaptic area[1] 0.001 um 2 0.4 um2[2] 400x

Synaptic Op Energy ~2 fJ ~4 pJ 2000x

[1] Planar neocortex   [2] ~5b SRAM

Max firing rate 100 Hz 1 GHz 10,000,000x

Synaptic error rate 75% 0% Њ

ćĴĳ,

Status today:

Nature Silicon

Autonomous self -assembly Fabricated manufacturing

Per-instance variability desired Variability causes brittle failures

Limited plasticity over lifetime Must support rapid reprogramming

Nondeterministic operation Deterministic operation desired

Å Nature has come up with 
ĲĮĬĤĳħĨĭĦ ĠĬĠĹĨĭĦ!  đĤĳœĲ 
ĢĮįĸ Ĩĳ,

Å Not so simple Ývery different 
design regimes

Å Yet objectives and constraints 
ĠıĤ īĠıĦĤīĸ ĳħĤ ĲĠĬĤ,

Energy minimization

Fast response time

Cheap to produce

Need to understand and apply the basic 
principles, adapting for differences
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Are Spiking Architectures Efficient?
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One Compelling Example: LASSO Sparse Coding

LASSO Optimization Using the Spiking Locally 
Competitive Algorithm
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both S-LCA and FISTA running on a Xeon

Neuromorphic algorithm rapidly 
finds a near-optimal solution
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Problem

Implementation

Input Sparse 
regularization

Reconstruction
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Tang et al, arxiv: 1705:05475
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Spiking LCA dynamics on a Loihi predecessor

LASSO Objective Over Time

Original Reconstruction Spikes

Much faster 
convergence on a 

neuromorphic 
architecture

Intense but very 
brief period of 
competition
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ĜħĠĳ ĳħĨĲ ĦĨĵĤĲ ĴĲ,a baseline SNN architecture

Z-1

+

Z-1

+

Neuron Model (IF)

×
1-Du

Ὕ Ὕ Ὕ Ὕ᷿ Ὕ

Local Synaptic
Routing

Synaptic
Accumulation

Output Axon
Routing

2D Mesh
Packetized spikes

High fanout required
Low overhead synchronization
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But how to scale to large LCA problems?

LCA is an all-to-Ġīī ĭĤĳĶĮıĪ,

z ,!

ὼ ὼ

z ,!

ὼ ὼ

z ,!

ὼ ὼ

Just 1000 feature neurons requires 1000 2 = 1M synapses
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Answer: Patch-based Connectivity Reuse

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

ĆĭĠīĮĦĮĴĲ ĳĮ ĳħĤ ŕĢĮĭĵĮīĴĳĨĮĭŖ Ĩĭ ConvNets

Conventional 1D convolution example w/ Lateral inhibition

Generalized Hierarchical 
Connectivity Example



*  Best conventional LASSO solver (LARS also evaluated)
** Iso-process, roughly iso-area (6-10mm 2)

PTPX-based measurements
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Sparse Coding Results: N1 vs Atom CPU
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N1 Advantage in Energy-Delay-Product

Comparison of sparse coding on N1 versus the FISTA* LASSO 
solver on an Atom CPU**

>5000x better48x speed-up

118x lower
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Neuromorphic Core Architecture

Discrete time LIF neuron model (CUBA)

Multi -compartment dendritic trees
up to 1K compartments

Intrinsic excitability homeostasis

Shared output routing table
4K axon routes

Axon delays

Refractory delays (+ random)

All synaptic connections pooled
128KB shared memory

Sparse, dense, and hierarchical
Synaptic mapping representations 

Synaptic delays

Synaptic eligibility traces

Flexible 3-tuple synaptic variables
(1-9b weight, 0 -6b delay, 0-8b tag)

ČıĠģĤģ ŕıĤĶĠıģ ĲįĨĪĤĲŖ

Flexible synaptic plasticity with

microcode -programmable rules

Sum-of-products rule semantics
Plasticity rules target any synaptic variable

Filtered spike train traces

Random noise sources
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Basic Core Operation (Non-Learning)

SYNAPSE DENDRITE

T+1 T+2 T+3 TT+4

(Wi,Di)

AxonID

WeightSum idx
CFG[idx] STATE[idx]

AxonIDj

AxonIDj+1

Input spike routing

Tables (very complex)

Output spike routing

tables (simpler)

Synaptic delay handling

(Time multiplexing illustrated unrolled in space)

Neuron model
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Learning with Synaptic Plasticity

Å Local learning rules Ýessential property for 
efficient scalability
Compatible with biological plausibility

Å Should be derived by optimizing an emergent 
statistical objective
Too much directionless experimentation otherwise

Å Plasticity on wide range of time scales is needed
Delayed reward/punishment responses, eligibility 
traces

Wx,y

x y

z

Ὁ έ ί

o

Supervision
signal

Learning rules for weight Wx,y

may only access presynaptic 
state x and postsynaptic state y

However reward spikes may be 
used to distribute graded 
reward/punishment values to a 
particular set of axon fanouts
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Trace-Based Programmable Learning

x1(t)

y1(t)

x2(t)

y2(t)

=̱20

=̱20

=̱200

=̱200

ύ ύ Ὓ ὠȟ ὅȟ

w

Short time scale trace correlations 
=> STDP regime

Long time scale traces respond 
to correlations in activity rates

Weight, Delay, and Tag learning rules 
programmed as sum-of -product equations

Variable Dependencies
X0, Y0, X1, Y1, X2, Y2,
Wgt, Delay, Tag, etc.

Synaptic Variables
Wgt, Delay, Tag
(variable precision)Traces are low precision (7-9b) 

and may decay stochastically for 
implementation efficiency

Presynaptic spike
Œĝœ ĳıĠĢĤĲ

Postsynaptic spike
ŒĞœ ĳıĠĢĤĲ

Trace: Exponentially 
filtered spike train

Intel Confidential
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Learning Rule Examples

Pairwise STDP:

ὡ ὸ ρ ὡ ὸ ὃὼ ὸώ ὸ ὃὼ ὸώ ὸ

Triplet STDP with heterosynaptic decay:

ὡ ὸ ρ ὡ ὸ ὃὼ ὸώ ὸ ὃὼ ὸώ ὸώ ὸ ὄẗὡ ὸẗώ ὸ

Delay STDP:

Ὀὸ ρ Ὀὸ ὃὼ ὸρςχώ ὸ ὃ ρςχὼ ὸώ ὸ
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Two-variable Learning Rule Examples

Distal Reward with Synaptic Tags:

Ὕὸ ρ Ὕὸ ὃὼ ὸώ ὸ ὃὼ ὸώ ὸ ὄẗὝὸ

ὡ ὸ ρ ὡ ὸ ὅẗὶὸẗὝὸ

STDP with dynamic weight consolidation:

ὡ ὸ ρ ὡ ὸ ὃὼ ὸώ ὸ ὃὼ ὸώ ὸώ ὸ ὄ ὡ Ὕώ ὸώ ὸ

Ὕὸ ρ Ὕὸ ὡ Ὕ ὄὝύ Ὕ ύ Ὕ



Spatiotemporal 
Attractors

Artificial Olfaction
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Example Novel Algorithms Supported by Loihi

Constraint Satisfaction

Stochastic 
Spiking 
Networks

E

Sudoku

Graph Search

Path Planning
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ĔĴı ŕčĤīīĮ ĜĮıīģŖ ĆįįīĨĢĠĳĨĮĭ"
Supervised Learning for Object Recognition

Training Inference
Active energy per 
image (total)

553 uJ 128 uJ

Neuromorphic energy 322 uJ 13 uJ
Processing time per 
image

7.5 ms 1.8 ms

Chip power 74 mW 73 mW
Neuromorphic power 43 mW 7.4 mW

Resource Utilization Count Utilization

Neurons 20 0.02%
Synapses 38400 0.28%
SNN Cores 1 078%

S-STDP rule:

87% accuracy in 4 seconds

99.6% accuracy in 78 seconds

Performance on COIL20 data set
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Up to the 10,000 foot view

The Nx System Framework
Å Heterogeneous hierarchical parallel system
Å Event-driven communication over channels
Å Localized state
ÅModels describe emergent behavior

0110001

A

B

NN

◐z ÁÒÇÍÉÎὊ●ȟ◐

Modules w/ behavioral models

Snip
(Sequential neural
interfacing process)

Spiking neuron

SNN specification

A, B: Sequential processes conventionally coded and
run on conventional CPUs

NN: Neural network module
Å Hierarchically specified
ÅMathematical behavioral model
ÅĒĠĸ ĨĭĢīĴģĤ ĢĮĭĵĤĭĳĨĮĭĠī ħĤīįĤı ĢĮģĤ ßŕĲĭĨįĲŖà
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Mapping to the Physical Layer

Abstraction Layer

Physical Layer

ŕĆĳĮĬĲŖ Įĥ ĳħĤ 
computational 
hierarchy are mapped 
to the system hardware 
resources 

(Static scheduling) 
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System Architecture Today

Arria10
Host

FPIO
(async serial)

Ethernet

Conventional sensors, 
actuators, etc. for 

application demos

ŕĘĴįĤı čĮĲĳŖ ĈĕĚ
Å Owns the high-level application
Å Compilation, visualization, debug, UI

Arria10 Host
Å Manages an entire mesh of Loihi chips
Å Glue logic to Loihi interfaces
Å Interface to real world/time data
Å Spike encoding/decoding in some cases

Loihi
Å Event-driven I/O model
Å Participates in barrier synchronization

Neuromorphic sensors
Å DVS camera
Å Silicon cochlea

PIO
(async parallel)

Loihi Loihi

Loihi Loihi

Loihi

Loihi

Loihi Loihi Loihi

Multi -chip scalability

Loihi

ŕĘĴįĤı čĮĲĳŖ ĈĕĚ


