

Introducing Loihi

Mike Davies Director, Neuromorphic Computing Lab | Intel Labs

Acknowledgement to the entire Loihi team: Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha Choday, Georgois Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, Yuyun Liao, Chit-Kwan Lin, Andrew Lines, Ruokun Liu, Deepak Mathaikutty, Steve McCoy, Arnab Paul, Jon Tse, Guru Venkataramanan, Yi-Hsin Weng, Andreas Wild, Yoonseok Yang, and Hong Wang

Motivation: The Case for Neuromorphic Computing

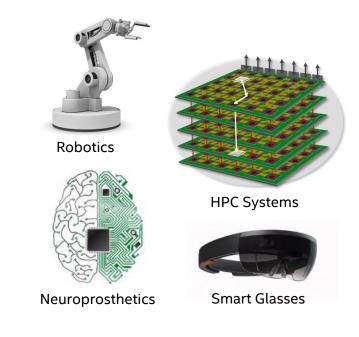
Problem Statement:

Emerging computing workloads demand intelligent behaviors that we do not know how to deliver efficiently with today's algorithms and computing architectures.

Examples:

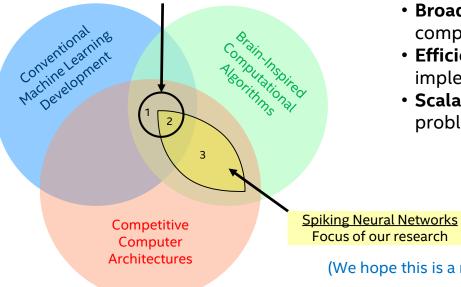
- Online and lifelong learning
- Learning without cloud assistance
- Learning with sparse supervision
- Understanding spatiotemporal data
- Probabilistic inference and learning
- Sparse coding/optimization
- Nonlinear adaptive control
- Pattern matching with high occlusion
- SLAM and path planning

Potential Future Product Applications



Solution Exploration Space

"Deep Learning" / Artificial Neural Networks



Research Goals:

- Broad class of brain-inspired computation
- Efficient hardware implementations
- Scalable from small to large problems and systems

Focus of our research

(We hope this is a non-empty class!)

The Engineering Perspective

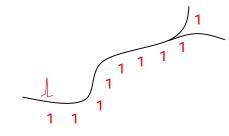
- Nature has come up with something amazing. Let's copy it...
- Not so simple very different design regimes
- Yet objectives and constraints are largely the same...
 - Energy minimization
 - Fast response time
 - Cheap to produce

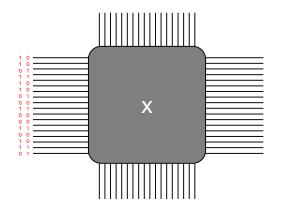
Need to understand and apply the basic principles, *adapting for differences*

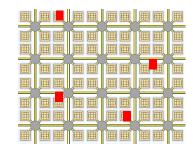
Status today:

		Nature		Silicon	Ratio
Neuron density ^[1]		100k/mm ²		5k/mm ²	20x
Synaptic area ^[1]		0.001 um ²		0.4 um ^{2[2]}	400x
Synaptic Op Energy		~2 fJ		~4 pJ	2000x
But				[1] Planar neoco	ortex [2] ~5b SRAM
Max firing rate		100 Hz		1 GHz	10,000,000x
Synaptic error rate		75%		0%	∞
Nature			Silico	n	
Autonomous self-assembly			Fabricated manufacturing		
Per-instance variability desired			Variability causes brittle failures		
SIC plasticity over lifeti		time	Must support rapid reprogramming		
5	rministic operation		Deterministic operation desired		

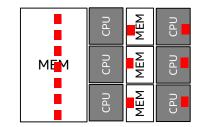
Are Spiking Architectures Efficient?

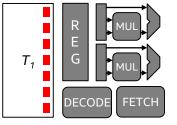




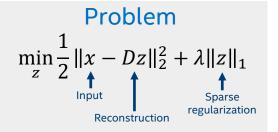




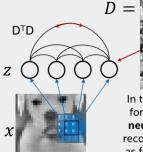




One Compelling Example: LASSO Sparse Coding



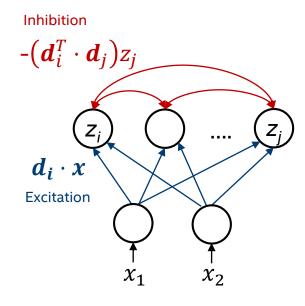
Implementation

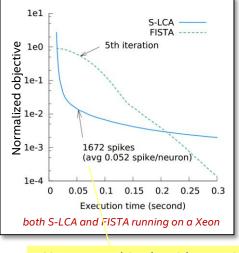


In the neural network formulation, **feature neurons compete** to reconstruct image with as few contributors as possible

Tang et al, arxiv: 1705:05475

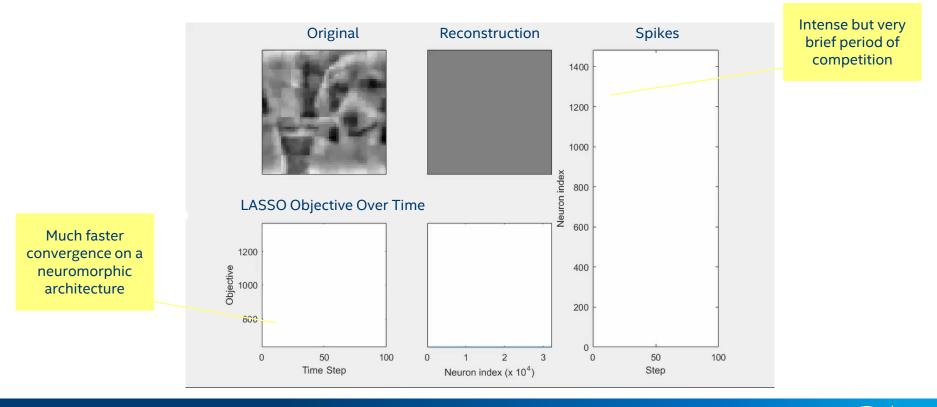
LASSO Optimization Using the Spiking Locally Competitive Algorithm



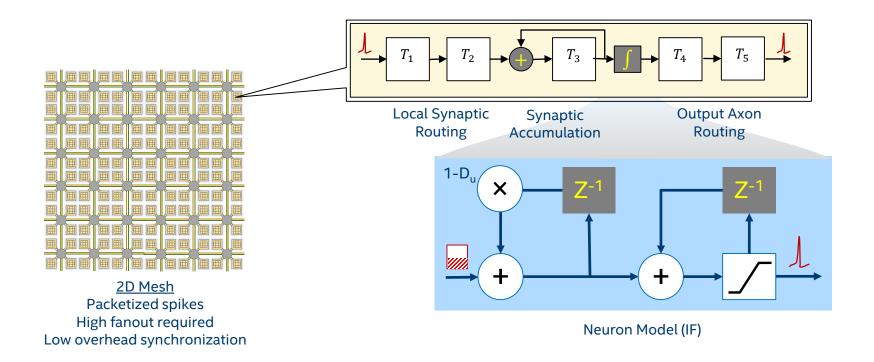


Neuromorphic algorithm rapidly finds a near-optimal solution

Spiking LCA dynamics on a Loihi predecessor

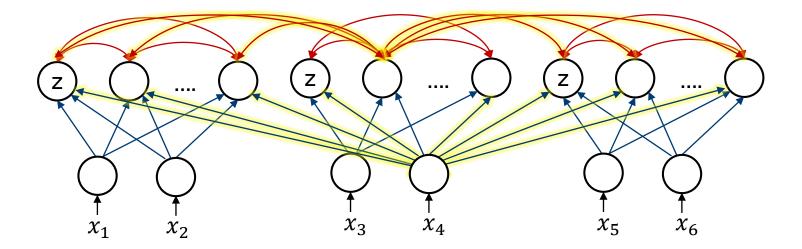


What this gives us... a baseline SNN architecture



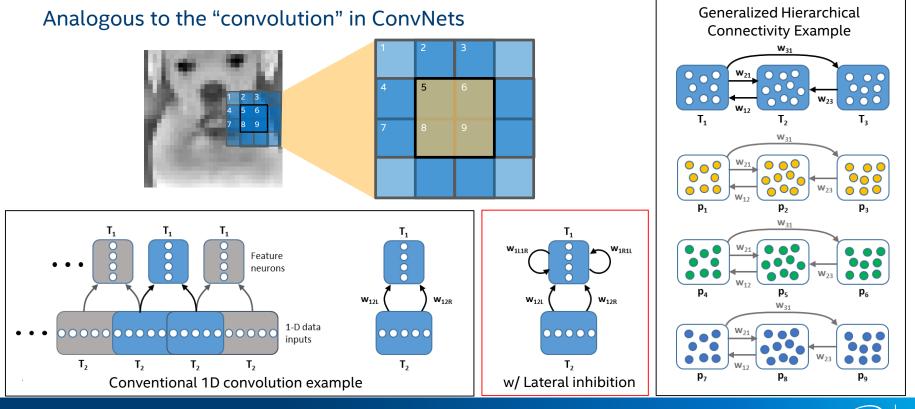
But how to scale to large LCA problems?

LCA is an all-to-all network...



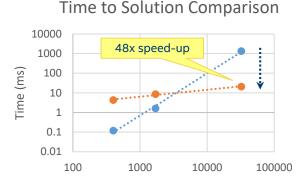
Just 1000 feature neurons requires 1000² = 1M synapses

Answer: Patch-based Connectivity Reuse

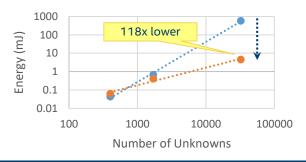


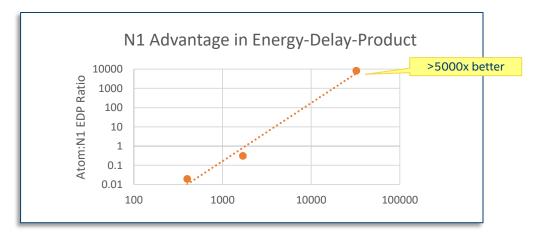
íntel

Sparse Coding Results: N1 vs Atom CPU



Energy to Solution Comparison





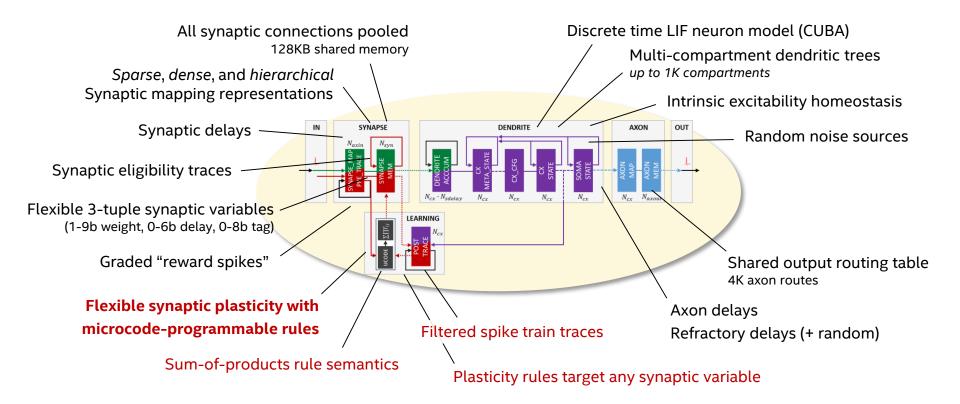
Comparison of sparse coding on N1 versus the FISTA* LASSO solver on an Atom CPU**

* Best conventional LASSO solver (LARS also evaluated)
** Iso-process, roughly iso-area (6-10mm²)
PTPX-based measurements

Atom (FISTA)

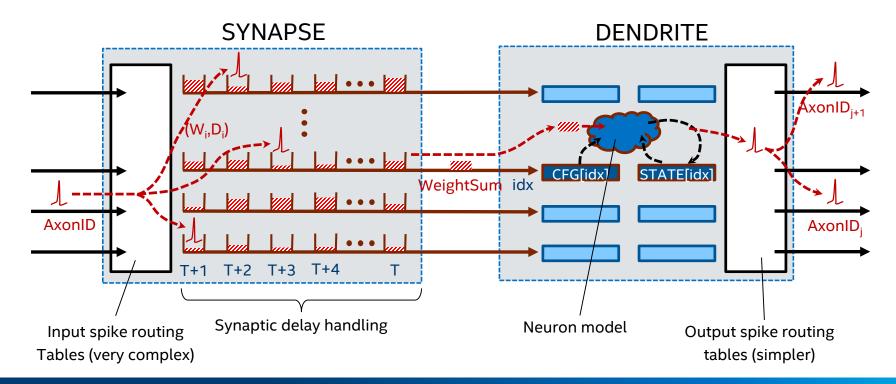
N1

Neuromorphic Core Architecture



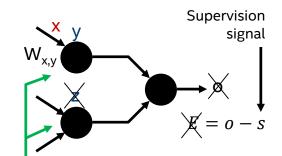
Basic Core Operation (Non-Learning)

(Time multiplexing illustrated unrolled in space)



Learning with Synaptic Plasticity

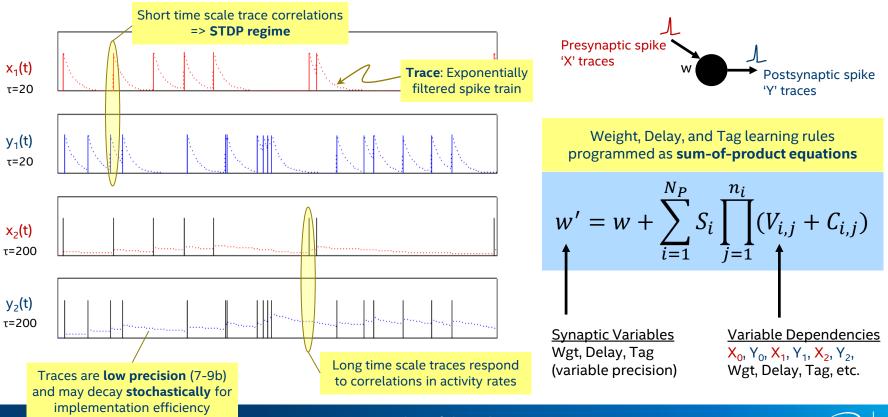
- Local learning rules essential property for efficient scalability Compatible with biological plausibility
- Should be derived by optimizing an emergent statistical objective Too much directionless experimentation otherwise
- Plasticity on **wide range of time scales** is needed Delayed reward/punishment responses, eligibility traces



Learning rules for weight $W_{x,y}$ may *only* access presynaptic state x and postsynaptic state y

However *reward spikes* may be used to distribute graded reward/punishment values to a particular set of axon fanouts

Trace-Based Programmable Learning



Learning Rule Examples

Pairwise STDP:

$$W(t+1) = W(t) - A_{-}x_{0}(t)y_{1}(t) + A_{+}x_{1}(t)y_{0}(t)$$

Triplet STDP with heterosynaptic decay:

 $W(t+1) = W(t) - A_{-}x_{0}(t)y_{1}(t) + A_{+}x_{1}(t)y_{0}(t)y_{2}(t) - B \cdot W(t) \cdot y_{3}(t)$

Delay STDP:

$$D(t+1) = D(t) - A_{-} x_{0}(t)(127 - y_{1}(t)) + A_{+}(127 - x_{1}(t))y_{0}(t)$$

Two-variable Learning Rule Examples

Distal Reward with Synaptic Tags:

$$T(t+1) = T(t) - A_{-}x_{0}(t)y_{1}(t) + A_{+}x_{1}(t)y_{0}(t) - B \cdot T(t)$$

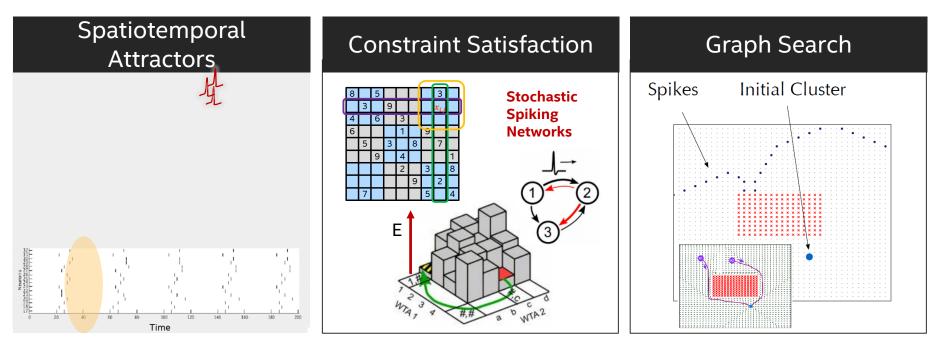
$$W(t+1) = W(t) + C \cdot r_1(t) \cdot T(t)$$

STDP with dynamic weight consolidation:

 $W(t+1) = W(t) - A_{-}x_{0}(t)y_{1}(t) + A_{+}x_{1}(t)y_{0}(t)y_{2}(t) - B_{1}(W-T)y_{3}(t)y_{0}(t)$

$$T(t+1) = T(t) + \frac{1}{\tau_{cons}}(W-T) - B_2 T(w_{\theta} - T)(w_{max} - T)$$

Example Novel Algorithms Supported by Loihi

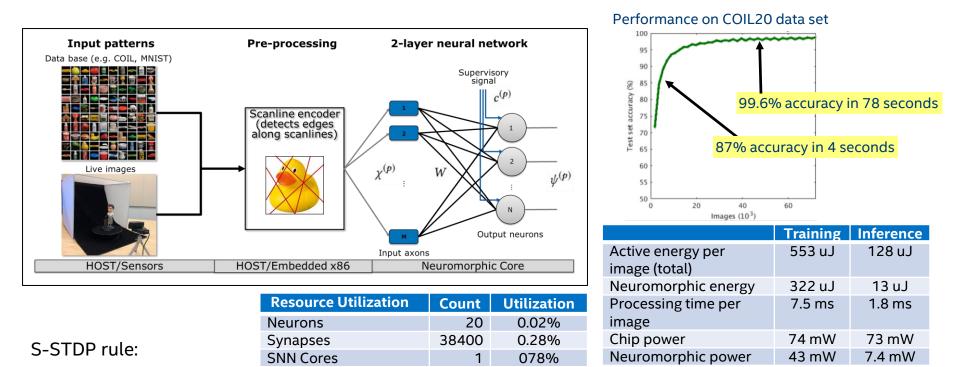


Artificial Olfaction

Sudoku

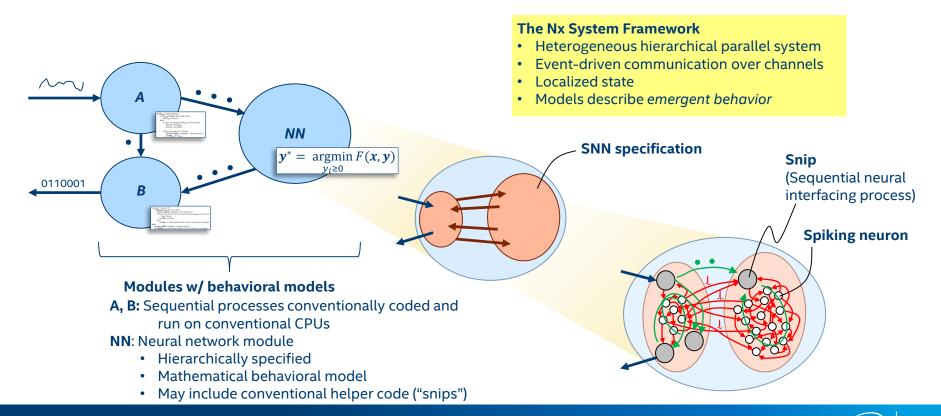
Path Planning

Our "Hello World" Application: Supervised Learning for Object Recognition



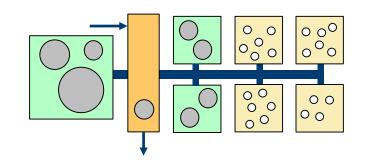
$$W_{i,j}(t) = W_{i,j}(t-1) + \eta \cdot \left(u_{\kappa} \cdot \delta_{i,C(p)} - y_{i,0}\right) \cdot x_{j,1}$$

Up to the 10,000 foot view



Mapping to the Physical Layer

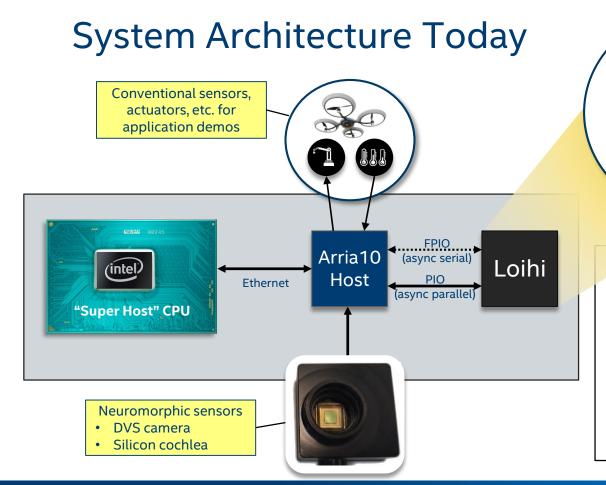
Abstraction Layer

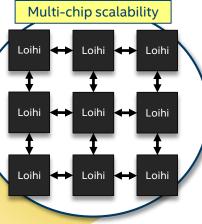


"Atoms" of the computational hierarchy are mapped to the system hardware resources

(Static scheduling)

Physical Layer





"Super Host" CPU

- Owns the high-level application
- Compilation, visualization, debug, UI

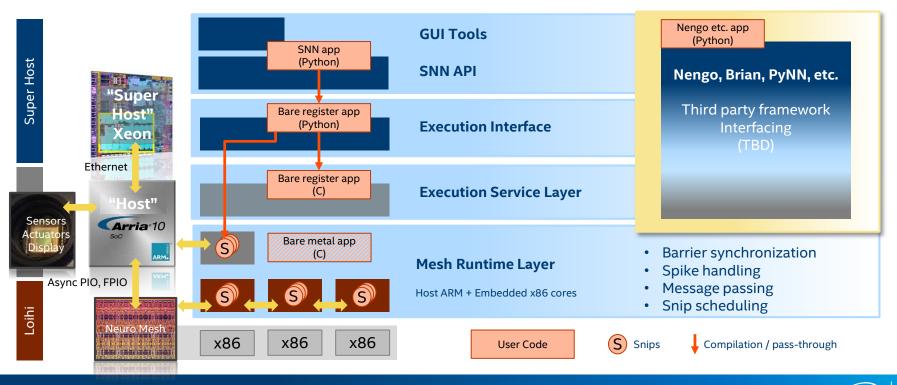
Arria10 Host

- Manages an entire mesh of Loihi chips
- Glue logic to Loihi interfaces
- Interface to real world/time data
- Spike encoding/decoding in some cases

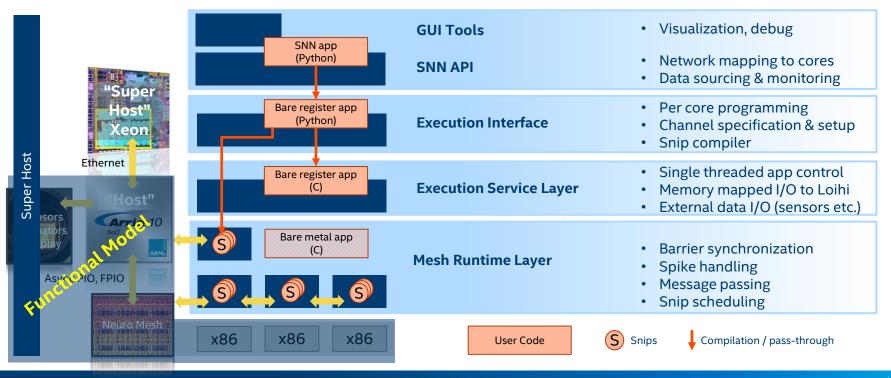
Loihi

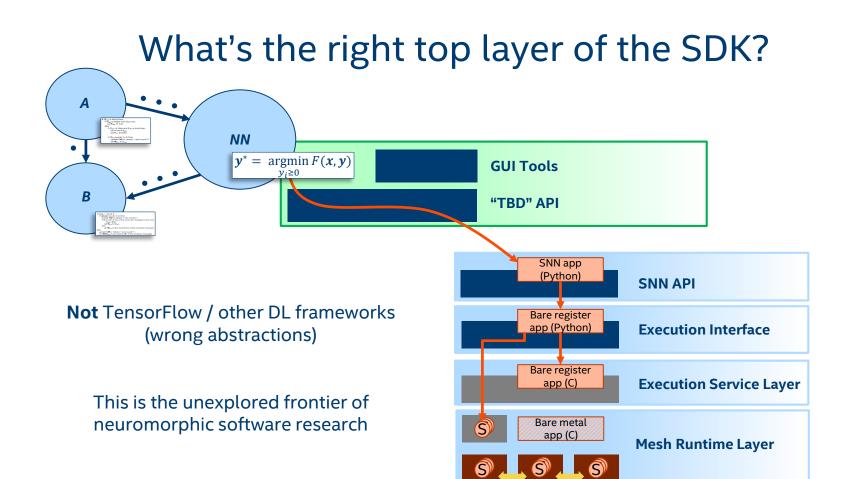
- Event-driven I/O model
- Participates in barrier synchronization

Current Software Development Kit (work in progress)

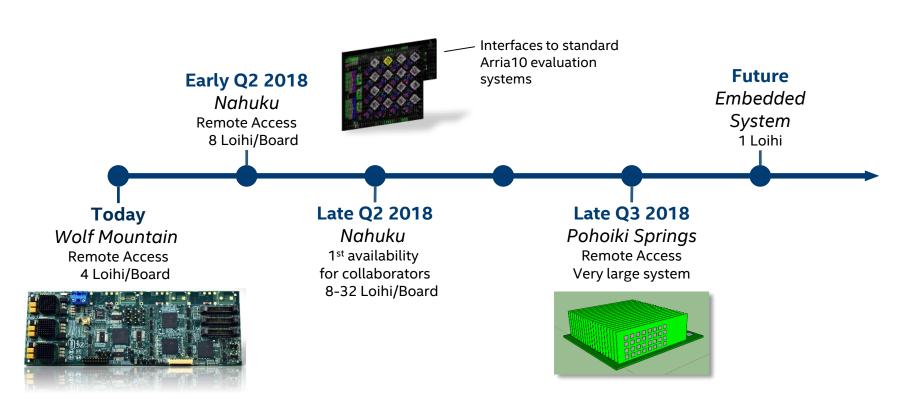


Current Software Development Kit (work in progress)





Loihi Systems Outlook



Intel Neuromorphic Research Community

RV1: Theory

- Abstract and quantify features of neuroscience to the context of systems engineering
- Computational complexity frameworks

RV2: Algorithms

• Principled derivations of SNN dynamics, features, and learning rules.

RV5: Sensors and Control

Sparse, event-driven I/O for SNN systems

Application Systems/SW Neuromorphic Algorithms Neuromorphic SDK

RV3: Applications

- Applications of Loihi and future Intel neuromorphic silicon / FPGA designs
- Benchmarks and value analysis may itself be research.

RV4: Programming Models

 New paradigms for conceptualizing and specifying SNN/neuromorphic algorithms

We wish to engage with collaborators in academic, government, industry research groups

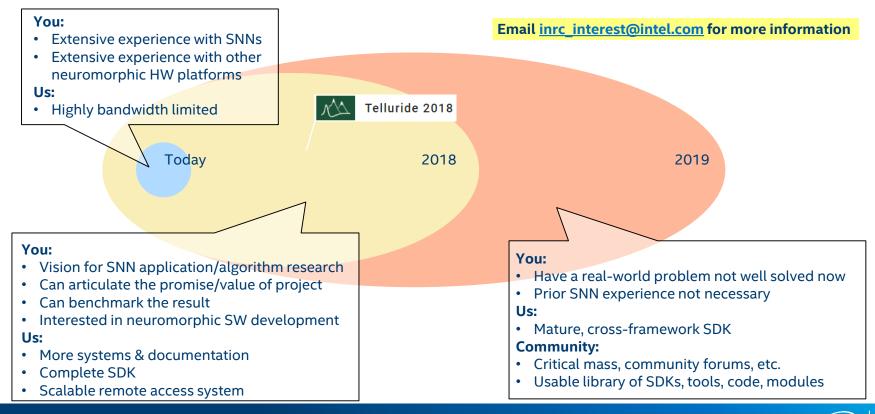
INRC goals:

- Demonstrate value of Loihi vs conventional solutions
- Share code, results, algorithms
- Motivate improvements for future silicon iterations

What we offer to INRC collaborators

- Remote access to Loihi systems, SDK, SW
- Loaned Loihi systems and bare chips (limited)
- Opportunity for limited funding (RFP available late March)

Please Join Us! (at the right time)



Email <u>inrc_interest@intel.com</u> for more information

LEGAL INFORMATION

This presentation contains the general insights and opinions of Intel Corporation ("Intel"). The information in this presentation is provided for information only and is not to be relied upon for any other purpose than educational. Statements in this document that refer to Intel's plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a number of risks and uncertainties. A detailed discussion of the factors that could affect Intel's results and plans is included in Intel's SEC filings, including the annual report on Form 10-K.

Any forecasts of goods and services needed for Intel's operations are provided for discussion purposes only. Intel will have no liability to make any purchase in connection with forecasts published in this document. Intel accepts no duty to update this presentation based on more current information. Intel is not liable for any damages, direct or indirect, consequential or otherwise, that may arise, directly or indirectly, from the use or misuse of the information in this presentation. Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

Copyright © 2018 Intel Corporation. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others